
Training-Time Optimization of a Budgeted Booster

Yi Huang, Brian Powers, Lev Reyzin
Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago
Chicago, IL 60607

{yhuang,bpower6,lreyzin}@math.uic.edu

Abstract
We consider the problem of feature-efficient pre-
diction – a setting where features have costs and
the learner is limited by a budget constraint on the
total cost of the features it can examine in test time.
We focus on solving this problem with boosting by
optimizing the choice of base learners in the train-
ing phase and stopping the boosting process when
the learner’s budget runs out. We experimentally
show that our method improves upon the boost-
ing approach AdaBoostRS [Reyzin, 2011] and in
many cases also outperforms the recent algorithm
SpeedBoost [Grubb and Bagnell, 2012]. We
provide a theoretical justication for our optimiza-
tion method via the margin bound. We also experi-
mentally show that our method outperforms pruned
decision trees, a natural budgeted classifier.

1 Introduction
The problem of budgeted learning centers on questions of re-
source constraints imposed on a traditional supervised learn-
ing algorithm. Here, we focus on the setting where a learner
has ample resources during training time but is constrained
by resources in predicting on new examples. In particular, we
assume that accessing the features of new examples is costly
(with each feature having its own access cost), and predic-
tions must be made without running over a given budget. This
budget may or may not be known to the learner. Learners
that adhere to such budget constraints are sometimes called
feature-efficient.

A classic motivation for this problem is the medical testing
setting where features correspond to the results of tests that
are often costly or even dangerous to perform. Diagnoses of-
ten need to be made on incomplete information and doctors
must order tests thoughtfully in order to stay within whatever
budgets the world imposes. In internet-scale applications this
problem also comes up. The cost to access certain features
of a document or website is often used as a proxy for com-
puting time which is crucially important to minimize. To ad-
dress this issue, Yahoo! has recently released datasets which
include feature costs [Xu et al., 2012].

Here, we focus on boosting methods, in particular
AdaBoost, to make them feature-efficient predictors. This

line of work was started by Reyzin [2011], who introduced
the algorithm AdaBoostRS, a feature-efficient version of
AdaBoost. While AdaBoostRS provably converges to the
behavior of AdaBoost as the feature budget is increased, it
only considers feature costs and budget at test time. Reyzin
left open the problem of whether optimizing during training
can improve performance. Here, we answer this question
with a resounding yes, giving algorithms that clearly outper-
form AdaBoostRS, especially when costs vary and budget
limits are small.

Our approach relies mainly on two observations. The first
is that when all features have equal costs, stopping the train-
ing of AdaBoost early, once the budget runs out, will out-
perform AdaBoostRS. Second, when features have differ-
ent costs, which is the setting that chiefly concerned Reyzin,
one can still run AdaBoostbut choose weak learners as to
better trade-off their cost against contribution to the perfor-
mance of the ensemble.

2 Past work
Research on this problem goes back at least to Wald [1947],
who considered the problem of running a clinical trial sequen-
tially, only testing future patients if the validity of the hypoth-
esis in question is still sufficiently uncertain. This question
belongs to the area of sequential analysis [Chernoff, 1972].

Ben-David and Dichterman [1993] examined the theory
behind learning using random partial information from ex-
amples and discussed conditions for learning in their model.
Greiner et al. [2002] also considered the problem of feature-
efficient prediction, where a classifier must choose which fea-
tures to examine before predicting. They showed that a vari-
ant of PAC-learnability is still possible even without access to
the full feature set.

In related settings, Globerson and Roweis [2006] looked
at building robust predictors that are resilient to corrupted
or missing features. Cesa-Bianchi et al. [2010] studied
how to efficiently learn a linear predictor in the setting
where the learner can access only a few features per ex-
ample. In the multi-class setting, Gao and Koller [2011]
used a parameter-tuned value-theoretic computation to cre-
ate efficient instance-specific decision paths. In a similar
vein, Schwing et al. [2011] trained a random forest to adap-
tively select experts at test-time via a tradeoff parameter.
He et al. [2012] trained an MDP for this task, casting it as



dynamic feature selection – their model is a variant of ours,
except that they attempt to jointly optimize feature costs and
errors, whereas our model has a strict bound on the budget.
Finally, Xu et al. [2012] tackled a related a feature-efficient
regression problem by training CART decision trees with fea-
ture costs incorporated as part of the impurity function.

In the area of boosting, Pelossof et al. [2010] analyzed
how to speed up margin-based learning algorithms by stop-
ping evaluation when the outcome is close to certain. Sun
and Zhou [2013] also considered how to order base learner
evaluations so as to save prediction time.

However, our main motivation is the work of
Reyzin [2011], who tackled the feature-efficient learn-
ing problem using ensemble predictors. He showed that
sampling from a weights distribution of an ensemble yields
a budgeted learner with similar properties to the origi-
nal ensemble, and he tested this idea experimentally on
AdaBoost. The goal of this paper is to improve on Reyzin’s
approach by considering the feature budget during training.

We also compare to the recent work of Grubb and Bag-
nell [2012], who also focused on this setting. Their algo-
rithm, SpeedBoost, works by sequentially choosing weak
learners and voting weight α as to greedily optimize the im-
provement of a loss function (e.g. exponential loss) per unit
cost, until the budget runs out.

3 AdaBoost and early stopping
Our goal in this paper is to produce an accurate classifier
given a budget B and a set of m training examples, each
with n features, and each feature with a cost via cost func-
tion C : [n]→ R+.

Reyzin’s AdaBoostRS [2011] takes the approach of ig-
noring feature cost during training and then randomly select-
ing hypotheses from the ensemble produced by AdaBoost
until the budget is reached.

Here we look at a different approach – to optimize the cost
efficiency of boosting during training, so the ensemble clas-
sifier that results is both relatively accurate and affordable.

One straightforward approach is to run AdaBoost, pay-
ing for the features of the weak learners chosen every round,
bookkeeping expenditures and the features used, until we
cannot afford to continue. In this case we are simply stop-
ping AdaBoost early. We call this algorithm the “basic”
AdaBoostBT for Budgeted Training. Surprisingly, this al-
beit simple methodology produces results that are signifi-
cantly better than AdaBoostRS for both features with a uni-
form cost and features with random cost across a plethora of
datasets.

We note that, in AdaBoost, since training error is upper
bounded by

P̂r[H(x) 6= y] ≤
T∏
t=1

Zt =

T∏
t=1

√
1− γ2t ,

at each round t of boosting one typically greedily chooses the
base learner that minimizes the quantity Zt, which is equiv-
alent to choosing the base learner that maximizes γt. This is
done in order to bound the generalization error, which was

Algorithm 1 AdaBoostBT(S,B,C), where: S ⊂ X ×
{−1,+1}, B > 0, C : [i . . . n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) =

1
m , B1 = B

3: for t = 1, . . . , T do
4: train base learner using distribution Dt, get

ht ∈ H : X → {−1,+1}

5: if the total cost of the unpaid features of ht exceeds Bt
then

6: set T = t− 1 and end for
7: else set Bt+1 as Bt minus the total cost of the unpaid

features of ht, marking them as paid
8: set

αt =
1

2
ln
1 + γt
1− γt

,

where γt =
∑
iDt(i)yiht(xi)

9: update

Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt,

where Zt is the normalization factor
10: end for

11: output the final classifier

H(x) = sign

(
T∑
t=1

αtht(x)

)

shown by Freund and Schapire [1997] to be bounded by

Pr[H(x) 6= y] ≤ P̂r[H(x) 6= y] + Õ

(√
Td

m

)
.

In these bounds P̂r refers to the probability with respect to
the training sample, and d is the VC-dimension ofH.

Hence, one can simply choose ht in step 4 of
AdaBoostBT according to this rule, which amounts to
stopping AdaBoost early if its budget runs out. As we
show in Section 6, this already yields an improvement over
AdaBoostRS. This is unsurprising, especially when the
budget or number of allowed rounds is low, as AdaBoost
aggressively drives down the training error (and therefore
generalization error), which AdaBoostRS does not do
as aggressively. A similar observation will explain why
the methods we will introduce presently also outperform
AdaBoostRS.

However, this approach turns out to be suboptimal when
costs are not uniform. Namely, it may sometimes be better
to choose a worse-performing hypothesis if its cost is lower.
Doing so may hurt the algorithm on that current round, but
allow it to afford to boost for longer, more than compensating
for the locally suboptimal choice.



4 A better trade-off
Here we focus on the problem of choosing a weak learner
when feature costs vary. Clearly, higher values of γt are still
preferable, but so are lower feature costs. Both contribute to
minimizing the quantity

∏T
t=1 Zt, which upper bounds the

training error. High γts make the product small term-wise.
Lower costs, on the other hand, allow for more terms in the
product.1 The goal is to strike the proper balance between the
two.

One problem is that it is difficult to know exactly how many
future rounds of boosting can be afforded under most strate-
gies. If we make the assumption that we expect the costs of
base learners selected in future rounds to be similar to the
cost c in this round, we could afford Bt/c additional rounds
of boosting. Assuming that future rounds will incur the same
cost and achieve the same γt as in the current round, mini-
mizing the quantity

∏T
t=1 Zt is equivalent to minimizing the

quantity (
1− γt(h)2

)T/2
=
(
1− γt(h)2

)Bt/2c
.

Since Bt/2 is common to all hypotheses, ht is chosen using
the following rule:

ht = argminh∈H

(
(1− γt(h)2)

1
c(h)

)
, (1)

where
γt(h) =

∑
i

Dt(i)yih(xi),

and c(h) is the cost of the features used by h. This is our
first algorithm criterion for modifying base learner selection
in step 4 of AdaBoostBT (boxed for emphasis). We call this
algorithm AdaBoostBT Greedy.

There is a potential pitfall with this approach: if we mark
every used feature down to cost 0 (since we don’t re-pay for
features), then the optimization will collapse since every base
learner with cost 0 will be favored over all other base learn-
ers, no matter how uninformative it is. We can obviate this
problem by considering the original cost during the selection,
but not paying for used features again while updating Bt, as
is done in our Algorithm.

As optimizing according to Equation 1 makes a very ag-
gressive assumption of future costs, we consider a smoother
optimization for our second approach. If in round t, we were
to select ht with cost c, the average cost per round thus far is
then

(B −Bt) + c

t
.

If we expect future rounds to have this average cost, we get a
different estimate of the number of additional rounds we are
able to afford. Specifically, in step 4 of AdaBoostBT, we
select a base learner according to

ht = argminh∈H

((
1− γt(h)2

) 1
(B−Bt)+c(h)

)
. (2)

1This also creates a slightly more complex classifier, which fac-
tors into the generalization error bound, but this effect has been ob-
served to not be very significant in practice [Reyzin and Schapire,
2006; Schapire et al., 1998].

Selecting according to Equation 2 is less aggressive, be-
cause as more of the budget is used, current costs mat-
ter less and less. Hence, we call this second algorithm
AdaBoostBT Smoothed. While some other feature-
efficient algorithms require a non-heuristic tuning parame-
ter to control trade-off, this equation continually revises the
trade-off as the budget is spent. Our experimental results
show that it pays to be less greedy for larger budgets. To fur-
ther customize this trade-off, however, a parameter τ ∈ (0, 1)
may be used to scale (B − Bt) allowing greed to drive the
decision for more rounds of boosting.

One could even implement a hybrid approach, in which the
algorithm begins by using AdaBoostBT Greedy to select
weak learners and switches to AdaBoostBT Smoothed
when the quality (a function of γ and c) of the unused fea-
tures drops below a certain threshold. Exploring this hybrid
idea, however, is outside the scope of this paper.

5 Additional theoretical justification
While the theory behind optimizing the bound of

∏T
t=1 Zt on

the training error is clear, we can borrow from the theory of
margin bounds [Schapire et al., 1998] to understand why this
optimization yields improved results for generalization error.

One might be concerned that in finding low cost hypothe-
ses, we will be building too complex a classifier, which will
not generalize well. In particular, this is the behavior that
the Freund and Schapire [1997] generalization bound would
predict. Fortunately, the margin bound theory can be used to
alleviate these concerns.

The following bound, known as the margin bound, bounds
the probability of error as a sum of two terms.

Pr[yf(x) ≤ 0] ≤ P̂r[yf(x) ≤ θ] + Õ

(√
d

mθ2

)
,

where f(x) =
∑T
t=1 αtht(x), as in Algorithm 1. The first

term is the fraction of training examples whose margin is be-
low a given value and the second term is independent of the
number of weak learners.

It can be shown [Schapire and Freund, 2012] that the first
term can be bounded as follows

P̂r[yf(x) ≤ θ] ≤ eθ
∑
αi

T∏
t=1

Zt,

where αi is defined in Algorithm 1. For small θ this tends to

T∏
t=1

Zt =

T∏
t=1

√
1− γ2t .

This well-known viewpoint provides additional justification
for optimizing

∏T
t=1 Zt, as is done in the preceding section.

6 Experimental results
Although there are a number of feature-efficient clas-
sification methods [Gao and Koller, 2011; Schwing et
al., 2011; Xu et al., 2012], we directly compare the
performance of AdaBoostBT, AdaBoostBT Greedy



Figure 1: Experimental results comparing our approaches to AdaBoostRS [Reyzin, 2011] and SpeedBoost [Grubb and
Bagnell, 2012]. Test error is calculated at budget increments of 2. The feature costs are uniformly distributed in the interval
[0,2]. The horizontal axis has the budget, and the vertical axis has the test error rate. AdaBoostRS test error rate uses the
secondary vertical axis (on the right hand side) for all data sets except for heart. Error bars represent a 95% confidence interval.

and AdaBoostBT Smoothed to AdaBoostRS and
SpeedBoost as both are feature-efficient boosting methods
which allow for any class of weak learners.

For our experiments we first used datasets from the UCI
repository, as shown in Table 1. The features and labels were

collapsed into binary categories, and decision stumps were
used for the hypothesis space.

Experimental results, given in Figure 1, compare average
generalization error rates over multiple trials, each with a ran-
dom selection of training examples. Features are given costs



num features training size test size AdaBoost rounds trials
(optimized)

ocr17 403 1000 5000 400 100
ocr49 403 1000 5000 200 100
splice 240 1000 2175 75 100
census 131 1000 5000 880 100

breast cancer 82 500 199 500 400
ecoli 356 200 136 50 400
sonar 11196 100 108 99 400
heart 371 100 170 15 400

ionosphere 8114 300 51 400 400
webscope set2 519 7000 15439 500 20

Table 1: Dataset sizes, numbers of features for training and test, and number of rounds when running the AdaBoost predictor.

Figure 2: Experimental results comparing our approaches to AdaBoostRS and SpeedBoost on the Yahoo! Webscope data
set 2. Test error is calculated at budget increments of 2. Error bars represent a 95% confidence interval.

uniformly at random on the interval [0, 2]. For comparison,
AdaBoost was run for a number of rounds that gave low-
est test error, irrespective of budget. This setup was chosen
to compare directly against the results of Reyzin [2011] who
also used random costs. We test on all the datasets Reyzin
used, plus others.

Then, to study our algorithms on real-world data, we
used the Yahoo! Webscope dataset 2, which includes feature
costs [Xu et al., 2012]. The data set contains 519 features,
whose costs we rescaled to costs to the set {.1, .5, 1, 2, 5, 10,
15, 20}. Examples are query results labeled 0 (irrelevant) to
5 (perfectly relevant). We chose to collapse labels 1-5 to be
binary label 1 (relevant) to test our algorithms. Results are
given in Figure 2.

The most apparent conclusion from our experiments is that
it is not only possible to improve upon AdaBoostRS by op-
timizing base learner selection during training, but that the
improvement is dramatic. Further modifications of the basic
AdaBoostBT tend to yield additional improvements.

AdaBoostBT Greedy often performs better than the ba-
sic AdaBoostBT for small budgets, but it chooses base
learners quite aggressively – a low cost base learner is ex-
tremely attractive at all rounds of boosting. This makes it
possible that the algorithm falls into a trap, as we see in
the sonar and ionosphere datasets where a huge number of
features (11,196 and 8,114 respectively) lead to many fea-
tures with costs close to zero (due to the cost distribution).
Even after 500 rounds of boosting on the sonar dataset, this
approach still does not spend the budget of 2 because the
same set of cheap features are re-used round after round lead-
ing to a deficient classifier. Similar behavior is seen for the
ecoli (356) and heart (371) datasets which also have relatively
small training sizes, leading to over-fitting on small budgets.
AdaBoostBT Smoothed avoids this trap by considering

the average cost instead. The appeal of cheap base learners is
dampened as the boosting round increases, with its limiting
behavior to choose weak learners that maximize γ. Thus, we
can see that using AdaBoostBT Smoothed, while tending



to perform worse than AdaBoostBT Greedy for low bud-
gets, tends to exceed its accuracy for larger budgets.

In cases when AdaBoost will noticeably over-fit with
larger budgets (breast cancer, ecoli, heart - note the behavior
of Stopping Early) we note that AdaBoostBT Smoothed
achieves the same (or better) error rate as AdaBoost at
much lower budgets. For example, on the ecoli data
set, AdaBoost needs a budget of 18 to achieve what
AdaBoostBT Smoothed does with a budget of 6.

On the Yahoo! Webscope data set, we see a dramatic
difference between AdaBoostBT and our other optimiza-
tions. However, this is understandable because AdaBoost
typically includes the expensive feature (cost of 20) in
early rounds of boosting thus failing to produce a feature-
efficient classifier for small budgets. Both the Greedy and
Smoothed optimizations, however, effectively select from
the less expensive features to create powerful low-budget
classifiers.

Comparing to Speedboost
We also compare to the classification algorithm
SpeedBoost [Grubb and Bagnell, 2012] on all data
sets, which was recently designed for tackling the same issue
SpeedBoost works by choosing weak learners (together

with a voting weight α) so as to greedily optimize the im-
provement of a loss function per unit cost until the budget
runs out. To mirror Grubb and Bagnell [2012], as well as
AdaBoost, we use exponential loss.

In our experiments, SpeedBoost performs almost iden-
tically to AdaBoostBT Greedy. This phenomenon can be
explained as follows. In AdaBoostBT Greedy we find

argminh∈H
(
1− γ(h)2

) 1
c(h) , while in SpeedBoost, im-

plicitly we find argmaxh∈H
1−
√

1−γ(h)2
c(h) (See Appendix A).

Since

minh∈H
(
1− γ(h)2

) 1
c(h) = maxh∈H

− ln
√

1− γ(h)2
c(h)

,

and the Taylor series of − ln(x) is

(1− x) + 1

2
(1− x)2 − o((1− x)2),

we have when γ(h) is close to 0 (the value toward which
boosting drives edges by making hard distributions), the two
functions SpeedBoost and AdaBoostBT Greedy seek
to optimize are very similar.

Moreover, both algorithms greedily optimize an objective
function without considering the impact on future rounds.
Hence, SpeedBoost falls into the same trap of copious
cheap hypotheses as AdaBoostBT Greedy. Note: the
lines for SpeedBoost are dashed because they overlap with
AdaBoostBT Greedy.

Yet, our approach offers a number of benefits over
SpeedBoost. First, we have flexibility of explicitly consid-
ering future rounds, as AdaBoostBT Smoothed does, in
many cases outperforming SpeedBoost– e.g. on the ecoli,
heart, sonar, and ionosphere data. Second, computational is-
sues (for a discussion, see [Grubb and Bagnell, 2012]) sur-
rounding choosing the best α is completely avoided in our

weak learner selection – in fact, we show in Appendix A
that the double optimization of SpeedBoost can also be
avoided. Hence, our approach is simple, yet powerful at the
same time.

7 A note on decision trees
One straightforward method for making a budgeted predictor
is to use decision trees, and we consider this approach in this
section. Decision trees are a natural choice for budgeted pre-
dictor since after a tree is constructed, each test example only
needs to go through one path of the tree in order the receive a
label. Hence, it incurs a cost using features only on that par-
ticular path. One may even be tempted to think that simply
using decision trees would be optimal for this problem. We
experimentally show that this is not the case, especially for
larger budgets.

The problem with decision trees is that when one has more
budget at hand and is able to grow larger trees, the trees be-
gin to overfit, and this occured on all datasets (Figure 3). In
contrast, AdaBoostBT performs better with more budget on
most datasets. Cost optimization methods, both Greedy and
Smoothed, tend to exploit large budgets to an even greater
extent. Budgeted boosting algorithms continue to drive error
rates down with higher budgets; decision trees do not.

Figure 3: Error Rates of decision trees. The horizontal axis is
these number of nodes (log scale in number of nodes, linear
in expected tree depth). The vertical axis is percent error. Di-
amonds show the AdaBoost error rate for easy comparison.

8 Future work
One direction for future work is to improve optimization for
cost distributions with few cheap features. In addition, one
could consider an adversarial cost model where cost and fea-
ture performance are strongly positively correlated, and ana-
lyze the extent to which optimization could help.

Other potentially promising approaches within our frame-
work would be to boost weak learners other than decision
stumps - for instance, boosting decision trees with the opti-
mizations we suggest in Section 3 would likely outperform
stumps, especially because decision trees show highest gains



at small budgets (see Figure 3). There remains the open ques-
tion of how to efficiently optimize Equation 1 or 2 for certain
exponentially large or infinite classes of weak learners.

Finally, it would be worthwhile to study making other ma-
chine learning algorithms feature-efficient by incorporating
budgets in their training.

References
Shai Ben-David and Eli Dichterman. Learning with restricted

focus of attention. In COLT, pages 287–296, New York,
NY, USA, 1993. ACM.

Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad
Shamir. Efficient learning with partially observed at-
tributes. CoRR, abs/1004.4421, 2010.

Herman Chernoff. Sequential Analysis and Optimal Design.
SIAM, 1972.

Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

Tianshi Gao and Daphne Koller. Active classification based
on value of classifier. In Advances in Neural Information
Processing Systems, pages 1062–1070, 2011.

Amir Globerson and Sam T. Roweis. Nightmare at test time:
robust learning by feature deletion. In ICML, pages 353–
360, 2006.

Russell Greiner, Adam J. Grove, and Dan Roth. Learning
cost-sensitive active classifiers. Artif. Intell., 139(2):137–
174, 2002.

Alexander Grubb and Drew Bagnell. Speedboost: Any-
time prediction with uniform near-optimality. In AISTATS,
pages 458–466, 2012.

He He, Hal Daumé III, and Jason Eisner. Imitation learning
by coaching. In NIPS, pages 3158–3166, 2012.

Raphael Pelossof, Michael Jones, and Zhiliyang Ying.
Speeding-up margin based learning via stochastic cur-
tailment. In ICML/COLT Budgeted Learning Workshop,
Haifa, Israel, June 25 2010.

Lev Reyzin and Robert E. Schapire. How boosting the margin
can also boost classifier complexity. In ICML, pages 753–
760, 2006.

Lev Reyzin. Boosting on a budget: Sampling for feature-
efficient prediction. In ICML, pages 529–536, 2011.

R.E. Schapire and Y. Freund. Boosting: Foundations and
Algorithms. Adaptive computation and machine learning.
MIT Press, 2012.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun
Lee. Boosting the margin: A new explanation for the ef-
fectiveness of voting methods. the Annals of Statistics,
26(5):1651–1686, 1998.

Alexander G Schwing, Christopher Zach, Yefeng Zheng, and
Marc Pollefeys. Adaptive random forest–how many ”ex-
perts” to ask before making a decision? In Computer Vi-
sion and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 1377–1384. IEEE, 2011.

Peng Sun and Jie Zhou. Saving evaluation time for the de-
cision function in boosting: Representation and reordering
base learner. In ICML, 2013.

Abraham Wald. Sequential Analysis. Wiley, 1947.
Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. The

greedy miser: Learning under test-time budgets. In ICML,
pages 1175–1182. ACM, July 2012.

APPENDIX
A Optimizing α, h in SpeedBoost
Here we show that the double optimization of h and α in
SpeedBoost is unnecessary computationally. As we show
presently, the optimization problem can be written solely as
a function of h and α can then be computed directly. Let
Ht(xi) =

∑t
τ=1 ατhτ (xi), SpeedBoost tries to find

argmax
α∈R+,h∈H

∑m
i=1e

−yiHt(xi) −
∑m
i=1e

−yi(Ht(xi)+αh(xi))

c(h)

For a fixed h ∈ H, let

I(α) =

m∑
i=1

e−yiHt(xi) −
m∑
i=1

e−yi(Ht(xi)+αh(xi)),

we have

I ′(α) = −
m∑
i=1

e−yiHt(xi)(−yih(xi))e−αyih(xi)

=
∑

{i:yi=h(xi)}

e−yiHt(xi)e−α −
∑

{i:yi 6=h(xi)}

e−yiHt(xi)eα

which is equal to zero if and only if

α =
1

2
ln

∑
{i:yi=h(xi)} e

−yiHt(xi)∑
{i:yi 6=h(xi)} e

−yiHt(xi)
. (3)

Plugging in the α above, we get

max
α∈R+,h∈H

∑m
i=1e

−yiHt(xi) −
∑m
i=1e

−yi(Ht(xi)+αh(xi))

c(h)

=

max
h∈H

1

c(h)

 m∑
i=1

`t(i)− 2

 ∑
i:yi=h(xi)

`t(i)
∑

i:yi 6=h(xi)

`t(i)

 1
2

.
Where `t(i) = e−yiHt(xi).

We have the optimization problem above is equal to

argmax
h∈H

1−
√
1− γ(h)2
c(h)

. (4)

Note that Equation 4 does not depend on α, which, after
choosing h, can be set according to Equation 3.


