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Abstract

We investigate the problem of reliable communication between two legitimate parties over deletion channels under an active
eavesdropping (aka jamming) adversarial model. To this goal, we develop a theoretical framework based on probabilistic finite-
state automata to define novel encoding and decoding schemes that ensure small error probability in both message decoding as
well as tamper detecting. We then experimentally verify the reliability and tamper-detection property of our scheme.

I. INTRODUCTION

The deletion channel is the simplest point-to-point communication channel that models synchronization errors. In the simplest
form, the inputs are either deleted independently with probability δ or transmitted over the channel noiselessly. As a result, the
length of channel output is a random variable depending on δ. Surprisingly, the capacity of deletion channel has been one of
the outstanding open problems in information theory [1]. A random coding argument for proving a Shannon-like capacity result
for deletion channel (in general for all channels with synchronization errors) was given by Dobrushin [2] which is recently
improved by Kirsch and Drinea [3] to derive several lower bounds. Readers interested in most recent results on deletion
channels are referred to the recent survey by Mitzenmacher [4] that provides a useful history and known results on deletion
channels.

As the problem of computing capacity of deletion channels is infamously hard, we focus on another problem in deletion
channels. In this paper, we study the behavior of the deletion channel under an active eavesdropper attack. Secrecy models
in information theory literature, initiated by Yamamoto [5], assume that there exists a passive eavesdropper who can observe
the symbols being transmitted over the channel. The objective is to design a pair of (randomized) encoder and decoder such
that the message is decoded with asymptotically vanishing error probability at the legitimate receiver while ensuring that the
eavesdropper gains negligible information about the message. In all secrecy models (see, e.g., [6]–[12]) the crucial assumption is
that the eavesdropper can neither jam the communication channel between legitimate parties nor can she modify any messages
exchanged between them. However, in many practical scenarios, the eavesdropper can potentially change the channel, for
instance, add stronger noise to change the crossover probability of a binary symmetric channel or the deletion probability of
a deletion channel.

In our adversarial model, we assume that two parties (say Alice and Bob) wish to communicate over a public deletion
channel while an eavesdropper (say Eve) can potentially tamper the statistics of the channel. We focus on deletion channel
and assume that Eve can have possibly more bits deleted, and hence increases the deletion probability of the channel. The
objective is to allow a reliable communication between Alice and Bob (with vanishing error probability) regardless of the
eavesdropper’s action. To this goal, we design (i) a randomized encoder using probabilistic finite-state automata which, given
a fixed message, generates a random vector as the channel input and (ii) a decoder which generates an estimate of the message
only when the channel is not tampered. In case the channel is indeed tampered, the decoder can declare it with asymptotically
small Type I and Type II error probabilities. It is worth mentioning that the rate of our scheme is (almost) zero and hence we
do not intend to study capacity of deletion channels.

Unlike the classical channel coding where the set of all possible channel inputs (aka, codebook) must be available at the
decoder, our scheme requires that only the set of PFSA’s used in the encoder to be available at the decoder. This model, that
we call semi-universal, is contrasted with universal channel coding [13] where neither channel statistics nor codebook are
known and the decoder is required to find the pattern of the message.

The rest of the paper is organized as follows. In Section II, we discuss briefly the notion of PFSA and its properties required
for our scheme. Section III specifies the channel model, encoder, decoder, and different error events. In Section IV, we discuss
the effects of deletion channels on PFSA. Section V concerns the thoeretical aspects of our coding scheme and Section VI
contains several experimental results.
Notation We use calligraphic uppercase letters for sets (e.g. S), sans serif font for functions (e.g. T), uppercase letters for
matrices (e.g. Γ), bold lower case letters for vectors (e.g. v). Throughout, we use g to denote a PFSA and s and x to denote
its state and symbol, respectively. We use xn = x1 . . . xn for a sequence of symbols or interchangeably, x if its size is clear
in context. Also, vi for ith entry of vector v, Ai,· and A·,j for the ith row or column of the matrix A, respectively. We
use (ax)x∈X to denote a vector with the entry indexed by x and (ax)x∈X a matrix with the column indexed by x. Finally,
xi = x1x2 . . . xi.

1Computation Institute and Institute of Genomics and System Biology, The University of Chicago, Chicago, IL 60637 shahab@uchicago.edu
2 The University of Chicago, Chicago, IL yhuang10@uchicago.edu
3Computation Institute, Chicago, IL ishanu@uchicago.edu



2

s1

s2

s3

s40|.3

1|.7

0|.6

1|.4

0|.8

1|.2

0|.5

1|.5

Fig. 1. A PFSA with S = {s1, s2, s3, s4} and X = {0, 1}.

II. PROBABILISTIC FINITE STATE AUTOMATA

In this section, we introduce a new measure of similarity between two vectors. To do this, we first need to define probabilistic
finite-state automata (PFSA).

Definition 1 (PFSA). A probabilistic finite-state automaton is a quadruple (S,X ,T,P), where S is a finite state space, X is a
finite alphabet with K = |X |, T : S ×X → S is the state transition function, and P : S ×X → [0, 1] specifies the conditional
distribution of generating a symbol conditioned on the state.

In fact, a PFSA is a directed graph with a finite number of vertices (i.e., states) and directed edges emanating from each
vertex to the other. An edge from state s1 ∈ S to state s2 ∈ S is specified by two labels: (i) a symbol x ∈ X that updates
the current state from s1 to s2, that is, T(s1, x) = s2, and (ii) the probability of generating x when the system resides in state
s1, i.e., P(s1, x). For instance, P(s1, 1) = 0.7 in the PFSA described in Fig. 1, thus, the system residing in states s1 evolve
to state s2 with probability 0.7 and it generates symbol 1. Clearly,

∑
x∈X P(s, x) = 1 for all s ∈ S. Given two symbols x1

and x2, one can define the transition function for the concatenation x1x2 as T(s, x1x2) = T(T(s, x1), x2). Letting X ∗ denote
the set of all possible concatenation of finitely many symbols from X , one can easily proceed to define T(s,x) as above for
each x ∈ X ∗ and s ∈ S . We say that a PFSA is strongly connected if for any pair of distinct states si and sj , there exists
a sequence x ∈ X ∗ such that T(si,x) = sj . Let G be the set of all strongly connected PFSAs. The significance of strongly
connected PFSAs is that their corresponding Markov chains (i.e., the Markov chain with state space S and transition matrix
P = [P (i, j)]|S|×|S| whose entry is P (i, j) =

∑
x∈X :T(si,x)=sj

P(si, x)) has a unique stationary distribution (thus initial state
can be assumed to be irrelevant).

Definition 2 (Γ-expression for PFSA). We notice that a PFSA g is uniquely determined by Γg = (Γg,x)x∈X given by

(Γg,x)i,j =

{
Pg(si, x), Tg(si, x) = sj ,
0, otherwise.

The state-to-state transition matrix Pg is defined as

Pg =
∑

x∈X
Γg,x, (1)

and the state-to-symbol transition matrix P̃g is given by

P̃g = (Γg,x1|S|)x∈X ,

where 1n is the length-n all-one vector.

For the PFSA illustrated in Fig. 1, we have

Γg,0 =




.3 0 0 0
0 0 .6 0
.8 0 0 0
0 0 .5 0


 , Γg,1 =




0 .7 0 0
0 0 0 .4
0 .2 0 0
0 0 0 .5


 ,

Pg =




.3 .7 0 0
0 0 .6 .4
.8 .2 0 0
0 0 .5 .5


 , and P̃g =




.3 .7

.6 .4

.8 .2

.5 .5


 .

Definition 3 (Generalized PFSA). Generalized PFSA is a PFSA g whose Γg,x can have more than one non-zero (positive)
entries. In this case, we still have (

Γg,x1|S|
)
i

= Pg(si, x).

However, T(si, x) might not be deterministic, and instead it is a probability distribution.



3

Shannon [14] appears to be the first one who made use of PFSAs to describe stationary and ergodic sources. Given g ∈ G,
first a state s1 is chosen randomly according to the stationary distribution, then a symbol x1 is generated with probability
P(s1, x1) which takes the system from state s1 to state s2. A new symbol x2 is then generated with probability P(s2, x2).
Letting this process run for n time units, we obtain a sequence x1, x2, . . . , xn. In this case, we say that x1, x2, . . . , xn is a
realization of g. According to Shannon, each state si captures the "residue of influence" of the preceding symbol xi−1 on the
system.

For x ∈ X ∗, we denote by x← g the fact that g ∈ G generates x.

M ι ω W ψXngM Y D M̂

T

Eveϕ

Fig. 2. A communication system with an active eavesdropper

III. SYSTEM MODEL AND SETUP

Suppose Alice has a message M which takes value in a finite set M := {1, 2, . . . , |M|} and seeks to transmit it reliably to
Bob over a deletion channel W(δ) with deletion probability δ ∈ [0, 1]. The communication channel is assumed to be public,
that is, an active eavesdropper, say Eve, can access and possibly tamper the channel. For simplicity, we assume that Eve may
delete extra bits and thus changing the channel from W(δ) to W(δ′) with δ′ ≥ δ.

The objective is to design a pair of encoder ϕ and decoder ψ that enables Alice and Bob to reliably communicate over
W(δ) only when he is ensured that the channel is not tampered. In classical information theory, the decoder must be tuned
with the channel statistics. Hence, reliable communication occurs only when Bob knows the deletion probability δ. However,
Eve might have tampered the channel and increased deletion probability to δ′, and since Bob’s decoding policy was tuned to
δ, this might cause a decoding error –regardless of Bob’s decoding algorithm. Therefore, reliability of the decoding must be
always conditioned on the fact that the channel has not been tampered during communication.

Motivated by this observation, we propose the following coding scheme. We first propose a two-step encoder: each message
M = m is first sent to a function ι : M → GM which maps m to a PFSA gm in GM := {g1, . . . , g|M|}, then another
function ω : GM → Xn generates yn a realization of PFSA gm and sends it over the memoryless channel W(δ). Therefore,
the encoder function ϕ : M → Xn is the composition ι ◦ ω (see Fig. 2). Unlike the classical setting, Bob need not know
the set of all channel inputs yn for each m ∈ M (aka codebook). Instead, we assume Bob knows GM (thus the name semi-
universal scheme). The output of the channel xD is an X -valued random vector whose length D is a binomial random variable
Bin(n, 1−δ) (corresponding to how many elements of yn are deleted). Upon receiving xD, Bob applies ψ : X ∗ →M×{0, 1}
to generate ψ(xD) = (M̂, T ) where M̂ is an estimate of Alice’s message and T specifies whether or not the channel has
been tampered. He then declares M̂ as the message only when T = 0. Therefore, the goal is to design (ϕ,ψ) such that for
sufficiently large n

Pr(T = 0 | channel is tampered) + Pr(T = 1 | channel is not tampered) < ε, (2)

and simultaneously
Pr(M 6= M̂ |T = 0) ≤ ε, (3)

for any uniformly chosen message M ∈ M. We say that the reliable tamper-free communication is possible if (2) and (3)
hold simultaneously for any ε > 0.

IV. PFSA THROUGH DELETION CHANNEL

In this section, we study the channel effect on PFSA’s by monitoring the change of the likelihood of x being generated by
a PFSA at the channel output. To do this, we first study the likelihood when δ = 0 in Section IV-A, and then move on to
the case of positive δ in Section IV-B. One of the main results in this section is to show that the output of W(δ) (i.e., xD)
can be equivalently generated by a generalized PFSA g(δ) whose Γ and state-to-state transition matrix follow simple closed
forms (cf. Theorem 1). In section IV-C, we discuss some basic properties of g(δ) that will be useful for later development. We
conclude this section by introducing the class M2 of PFSAs which is closed under deletion. For notational brevity, we remove
the subscript g when it is is clearly understood from context.

A. PFSA over W(0): no deletion
Let a sequence of symbols x = x1 . . . xn ∈ X ∗ be given. We define pg(x) (or simply p(x)) to be the probability that g

generates x. Then we have
p(xn) = p(x1)p

(
x2|x1

)
· · · p

(
xn|xn−1

)
,
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where p
(
xi|xi−1

)
is the conditional probability of g generating xi given that g generated xi−1. It is clear from section II that

p0 = p (4)

p(x1) =
(
pT0 P̃

)
x1

, pT1 =
pT0 Γx1∥∥pT0 Γx1

∥∥
1

,

p (x2|x1) =
(
pT1 P̃

)
x2

, pT2 =
pT1 Γx2∥∥pT1 Γx2

∥∥
1

,

...

p
(
xn−1|xn−2

)
=
(
pTn−2P̃

)
xn−1

, pTn−1 =
pTn−2Γxn−1∥∥pTn−2Γxn−1

∥∥
1

,

and finally, p
(
xn|xn−1

)
=
(
pTn−1P̃

)
xn

, where T denotes matrix transpose.
It is clear from the above update rule that any sequence xn induces two probability distribution: one on the state space S,

i.e., pn and the other one on X . Let denote the former by pg(x) and the latter by Dg(x). Update rules in (4) imply that
Dg(x) = pTg (x)P̃g and pTg (xx) ∝ pTg (x)Γg,x. More precisely, since

∥∥pTg (x)Γg,x
∥∥
1

= pTg (x)Γg,x1|S| = pTg (x)
(
P̃g

)
·,x

=
(
pTg (x)P̃g

)
x

= p(x|x),

we have
pT (x|x)pg(xx) = pTg (x)Γg,x. (5)

We also call Dg(x) = (pg(x|x))x∈X the symbolic derivative of g induced by x.

B. PFSA over W (δ): deletion with probability δ > 0

Now we move forward to investigate the effect of deletion probability on PFSA transmission. The following result is a ket
for our analysis.

Theorem 1. Let y ← g be a channel input and x be a channel output with positive deletion probability δ. Then x ← g(δ),
where g(δ) is a generalized PFSA identified by Γg,x,δ = Q(P, δ)Γg,x for all x ∈ X , where P is the state-to-state transition
matrix of g and Q is as defined in (6).

Proof. Assume Bob has observed xi−1. Then we have

p(xi|xi−1) = (1− δ)
(
pTi−1P̃

)
xi

+ δ(1− δ)
(
pTi−1PP̃

)
xi

+ δ2(1− δ)
(
pTi−1P

2P̃
)
xi

+ · · ·

= (1− δ)
(

pTi−1

( ∞∑

i=0

δiP i

)
P̃

)

xi

=
(
pTi−1Q(P, δ)P̃

)
xi
,

where

Q(P, δ) = (1− δ)
∞∑

i=0

δiP i = (1− δ) (I − δP )
−1
. (6)

Analogous to (4), we can define the follwoing distribution induced on S

pi =
pTi−1Q(P, δ)Γxi∥∥pTi−1Q(P, δ)Γxi

∥∥
1

. (7)

Comparing (7) with expressions pi in (4), the result follows.

Remark 1. Notice that while the row-stochastic matrix P may not be invertible, I − δP is non-singular for all δ ∈ [0, 1), as
the the eigenvalues of P are less than or equal to 1. Moreover, it is clear from (6) that Q(P, δ) is also a row-stochastic matrix
with p being its eigenvector corresponding to eigenvalue one. We will give a closer look at the eigenvalues of Q(P, δ) in the
next section.

C. Properties of the generalized PFSA

We start by analyzing the eigenspace of the state-to-state transition matrix of g(δ). Note that it follows from (1) that
Pg(δ) = Q (Pg, δ)Pg .
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Fig. 3. On the left: g(.3,.6) in class M2. On the right, g(.3,.6)(.25), with transition probabilities rounded to two decimal places. We can see
that deletion only cause the transition probabilities to change, but keep the structure of the machine.

Theorem 2. Let pg be the stationary distribution of strongly connected g. Then the generalized PFSA g(δ) is also strongly
connected with stationary distribution pg(δ) = pg .

Proof. Let λ be an eigenvalue of Pg . Then λ(1−δ)(1−δλ)−1 is an eigenvalue of Pg(δ). Define f(λ, δ) = λ(1−δ)(1−δλ)−1.
Then the result follows from the following observations:

1) For λ = 1, f(λ, δ) = 1 for all δ ∈ [0, 1), and hence limδ→1 f(1, δ) = 1.
2) For λ < 1, f(λ, δ) < λ for all δ ∈ [0, 1), and furthermore, limδ→1 f(λ, δ) = 0.

Then following is an immediate corollary.

Corollary 1. We have for all x ∈ X
pg(x) = pg(δ)(x).

Proof. We have
pTg(δ)P̃g(δ) = pTg P̃g(δ) = pTg Q(Pg, δ)P̃g = pTg P̃g.

A natural question is what happens when δ ↑ 1. Letting g(1) denote the machine corresponding to δ ↑ 1, we now show that,
quite expectedly, g(1) is a single-state machine.

Theorem 3. g(1) is a single-state PFSA.

Proof. First note that the observations given in the proof of Theorem 2 imply that

lim
δ→1

Q(Pg, δ) = 1|S|p
T
g ,

and consequently g(1) is a PFSA specified by 1|S|pTg Γg,x for x ∈ X .
Suppose x = x1x2 . . . xn is observed. Following the argument given in section IV-B, we get

pg(1)(xx)

= pT (1pTΓx1
)(1pTΓx2

) · · · (1pTΓxn)
(
P̃g(1)

)
·,x

= pT (1pTΓx1)(1pTΓx2) · · · (1pTΓxn)
(
1pTΓx1

)

=
(
pT1

) (
pTΓx1

1
)
· · ·
(
pTΓxn1

) (
pTΓx1

)
,

and hence, by induction, pg(1)(x|x) = pTΓx1 for all x. Since an i.i.d. process corresponds to a single-state PFSA, we conclude
that g(1) is in fact a single-state PFSA.

D. M2 Class of PFSA

We note that g(δ) of a PFSA g is not necessarily a PFSA. As an example, the Γ-expression of the generalized PFSA g(.4)
for g being the PFSA described in Fig. 1 is

Γg(.4),0 =




.26 0 .14 0

.16 0 .44 0

.57 0 .08 0

.14 0 .40 0


 ,Γg(.4),1 =




0 .50 0 .10
0 .08 0 .32
0 .29 0 .06
0 .07 0 .39


 .

Nevertheless, we introduce M2 a class of PFSAs which is closed under deletion, i.e. g ∈ M2 implies g(δ) ∈ M2 for all
δ ∈ [0, 1]. As this class is instrumental in our experimental results, we shall study it in more details.

M2 is the collection of 2-state PFSAs on a binary alphabet: g = g(µ,ν) ∈ M2 with µ, ν ∈ (0, 1) × (0, 1) is specified by a
quadruple

(
S,X ,T,P(µ,ν)

)
, where S = {s0, s1} X = {0, 1} , and
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Γg(µ,ν),0 =

(
µ 0
ν 0

)
, Γg(µ,ν),1 =

(
0 1− µ
0 1− ν

)
.

Fig. 3 illustrates g(.3,.6) and its corresponding g(.3,.6)(δ), which is obtained from Theorem 1. Since Γg,x,δ has exactly the
same form – containing a single column of non-zero entries for all δ, it is clear that g(.3,.6)(δ) ∈ M2.

Since each g(ν,µ) is specified by two numbers, we can parametrize M2 by a square in R2. In Fig. 4, we show the effect of
deletion probability on M2 machines. The key observation is that deletion probability drives machines to µ = ν line.

(a) δ = 0 (b) δ = 0.25 (c) δ = 0.50 (d) δ = 0.75

Fig. 4. Each dot in (a) represents a g(µ,ν) in M2 with µ, ν both ranging from 0.01 to 0.99 and with 0.01 increment. The color of the points
is proportional to the KL divergence (defined in Section V-B) of g(.5,.5) to g. The reason that the images are symmetric with respect to the
µ+ ν = 1 line is that g(1−ν,1−µ) is exactly g(µ,ν) with the two states swapped. We can see that while we increase δ, the dots are moving
towards the µ = ν line which corresponds to the single-state PFSA. The asymmetry in how fast PFSA on each side of the µ+ ν = 1 line
converges to single-state PFSA is caused by structural difference between them – machines on the upper side, with µ < ν, have strong
connections between two states, while machines on the lower side, with µ > ν, have weaker connection between the states.

V. THE CONVERGENCE OF LIKELIHOOD

The goal of this section is to lay the theoretical ground for our algorithms for decoding and tamper detecting with PFSAs. In
Section V-C, we employ maximum likelihood framework to decode the generating PFSA given the channel output. We show
that likelihood is closely related to entropy rate and KL divergence of PFSAs (to be defined and calculated in V-A and V-B).

A. Entropy rate of PFSA

Let g be a PFSA. We define Hn(g) as the following:

Hn(g) := −
∑

|x|=n
pg(x) log pg(x).

Then the entropy rate of g is defined as

H(g) := lim
n→∞

1

n
Hn(g).

Note that H(g) is in fact the entropy rate of the stochastic process corresponding to g [15]. In the next theorem, we show that
the above limit exists and and the entropy rate has a simple closed form.

Theorem 4. We have
H(g) =

∑

s∈S
(pg)sH

((
P̃g

)
s,·

)

Proof. See Appendix VII-A.

It readily follows from the theorem above that the entropy rate for g(µ,ν) is

H
(
g(µ,ν)

)
=
νhb(µ)

µ̄+ ν
+
µ̄hb(ν)

µ̄+ ν
,

where ā := 1− a and hb(a) := −a log a− ā log ā is the binary entropy function for any a ∈ [0, 1].
Next, we show that deletion increases entropy rate, which will be critical for tamper detection purpose.

Theorem 5. The map δ 7→ H(g(µ,ν)(δ)) is monotonically increasing when µ 6= ν.

Proof. We have

µ(δ) =
µ− δ(µ− ν)

1− δ(µ− ν)
, ν(δ) =

ν

1− δ(µ− ν)
,
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and
H
(
g(µ,ν)(δ)

)
=

ν

1− µ+ ν
hb

(
µ− δ(µ− ν)

1− δ(µ− ν)

)
+

1− µ
1− µ+ ν

hb

(
ν

1− δ(µ− ν)

)
.

We can then write
d
dδ
H(g(µ,ν)(δ)) =

αµ̄ν

(1− αδ)2ᾱ log
(µ− δα)(ν̄ − δα)

µ̄ν
,

where α = µ− ν. It’s straightforward to check that the derivative is always positive when µ 6= ν.

B. KL divergence of two PFSAs

Let g1, g2 ∈ M2. The n-th order KL divergence between g1 and g2 is the KL divergence on the space of length-n sequences,
i.e.

Dn (g1‖ g2 ) =
∑

|x|=n
pg1(x) log

pg1(x)

pg2(x)
.

Analogous to entropy rate, we can define the KL divergence between g1 and g1 as

DKL (g1‖ g2 ) := lim
n→∞

1

n
Dn (g1‖ g2 ) .

We show in Theorem 6 below shows that the limit exists and also derived a closed form for the KL divergence between two
PFSAs. But before we can state the theorem, we need to introduce a very useful construction on two PFSAs, called synchronous
composition.

Definition 4 (synchronous composition). Let g1 = (S,X ,T1,P1) and g2 = (T ,X ,T2,P2) be two PFSAs with the same
alphabet and let g∗c (g1‖ g2 ) be the probabilistic automata specified by the quadruple (Sc,X ,Tc,Pc) where

Sc = S1 × T = {(s, t)}s∈S1,t∈T
is the Cartesian product of S and T , and

Tc((s, t), x) = (T1 (s, x) ,T2 (t, x)) ,

Pc((s, t), x) = P1 (s, x) ,

for all s ∈ S, t ∈ S, and x ∈ X . Then the synchronous composition gc (g1‖ g2 ) is defined to be any absorbing strongly
connected component of g∗c (g1‖ g2 ), i.e. strongly connected component without any out-going edges.

It is not clear that there is only one absorbing strongly connected component in g∗c (g1‖ g2 ). However, as proved in Theorem 8
in Appendix VII-B, gc (g1‖ g2 ) is equivalent to g1 irrespective of the choice of absorbing strongly connected component, i.e.,
pgc (x) = pg1 (x) for x ∈ X ∗.

In Figs. 6, 7, 8, and 9, we provide examples of synchronous compositions for several g1 and g2 which shed light on the
fact that the synchronous composition of two strongly connected PFSA might not be strongly connected.

Theorem 6. Let gc = gc (g1‖ g2 ) and pgc be the stationary distribution of gc. Then we have

lim
n→∞

1

n
Dn

(
png1
∥∥ png1

)
=

∑

s∈S,t∈T
(pgc)(s,t)DKL

((
P̃g1

)
s,·

∥∥∥∥
(
P̃g2

)
t,·

)
.

Proof. See Appendix VII-B.

In light of this theorem, one can easily show

DKL (g1‖ g2 ) =
ν1DKL (µ1‖µ2 )

µ̄1 + ν1
+
µ̄1DKL (ν1‖ ν2 )

µ̄1 + ν1
.

C. Convergence of log likelihood

According to Shannon-McMillan-Breiman Theorem [15, Theorem 16.8.1], we have − 1
n log pg(x)→ H(g) for any sequence

x← g. A natural question is that what the log-likelihood converges to if x is generated by a different machine. The following
theorem states that the log-likelihood converges to entropy of generating machine plus the KL divergence which accounts for
the mismatch.

Theorem 7. For any xn ← g ∈M2, we have with probability one

− 1

n

n∑

i=1

log pg′
(
xi|xi−1

)
→ H(g) +DKL (g‖ g′ ) ,
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for any PFSA g′ ∈M2.

Proof. First note that

− 1

n

n∑

i=1

log pg′(xi|xi−1) = − 1

n
log pg(x) +

1

n

n∑

i=1

log
pg(xi|xi−1)

pg′(xi|xi−1)
. (8)

Clearly, the first term in the above sum converges to H(g). To show the convergence of the second term, let Zi = log
pg(xi|xi−1)
pg′ (xi|xi−1) .

Notice that for any PFSA g in M2 and for 1 ≤ i ≤ n, pg(x
i) equals [1, 0] for all xi with xi = 0, and to [0, 1] for all xi with

xi = 1, and hence the process {Zi}ni=1 is a Markov process. Let Z0 and Z1 denote the set of indices i such that xi−1 = 0
and xi−1 = 1, respectively. Then we have

1

n

n∑

i=1

Zi =
1

n

∑

i∈Z0

Zi +
1

n

∑

i∈Z1

Zi. (9)

It is straightforward to show that for all i ∈ Z0

Zi = 1{xi=0} log
µg
µg′

+ 1{xi=1} log
µ̄g
µ̄g′

,

and for all i ∈ Z1

Zi = 1{xi=0} log
νg
νg′

+ 1{xi=1} log
ν̄g
ν̄g′

.

It follows from (9) that

1

n

n∑

i=1

Zi =
1

n

(
log

µg
µg′

) n∑

i=1

1{xi−1=0,xi=0} +
1

n

(
log

µ̄g
µ̄g′

) n∑

i=1

1{xi−1=0,xi=1} +
1

n

(
log

νg
νg′

) n∑

i=1

1{xi−1=1,xi=0}

+
1

n

(
log

ν̄g
ν̄g′

) n∑

i=1

1{xi−1=1,xi=1}

n→∞−→ pg(0)

(
µg log

µg
µg′

+ µ̄g log
µ̄g
µ̄g′

)
+ pg(1)

(
νg log

νg
νg′

+ ν̄g log
ν̄g
ν̄g′

)
.

For ease of presentation, we define

L (g′,xn ← g) := − 1

n

n∑

i=1

log pg′(xi|xi−1).

When the generating machine g is not known, we use L (g′,xn) to identify likelihood of g′ generating x.

VI. ALGORITHM AND SIMULATION

A. Decoding

In this and the following section, we assume that we have a set of PFSAs G =
{
g1, . . . , g|M|

}
, with gi ∈ M2 for all i.

We will briefly discuss heuristics on how to generate a set of PFSAs that are good for tamper detecting and decoding in
SectionVI-C.

We saw in Theorem 7 that

L (gj(δ),x
n ← gi(δ))→ H(gi(δ)) +DKL (gi(δ)‖ gj(δ) ) , (10)

which motivates the following definition for the decoding function in Fig. 2

ψ(x) = arg min
m∈M

L (gm(δ),xn) .

We apply this decoding strategy in Fig. 5 when δ = .2 and two different message sets with |M|= 10 or |M|= 20.

B. Tamper detecting

We assume that active eavesdropper tampers the channel in such a way that δ′−δ > η with some η ≥ 0. Following Theorems
5 and 7, we get

L (gj(δ),x← gi(δ
′))→ H(gi(δ

′)) +DKL (gi(δ
′)‖ gj(δ) )

≥ H(gi(δ)), (11)

where the inequality is due to Theorem 5. Hence, tampering the channel results in an increase in the likelihood. This leads to
our temper detecting procedure detailed in Algorithm 1.
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(a) (b) (c) (d)

Fig. 5. (a) and (c) shows 10 PFSAs and 20 PFSAs in the parameter space, respectively, with purple dots for the gm’s and blue dots for
gm(.2)’s. Error rates for input sequences of length 10 to 200 for the 10 messages, and for input sequences of length 40, 400 for the 20
messages are showed in (b) and (d), respectively. The results are averaged over 20 and 10 re-runs.

Algorithm 1: Tampering detection
input : {gm}m∈M, x1, . . . ,xk, δ, η, ε
output: T with T = 0 if no tampering, 1 if otherwise
H0 = (H(gm(δ)))m∈M;
H1 = (H(gm(δ + η)))m∈M;
D = H1 −H0;
v = 0; /* the weighted vote */
for i = 1, . . . , k do

d = arg minm∈M L (gm(δ),yi);
e = L (gd(δ),yi);
if e−H (gd(δ)) > ε ·D[d] then

v = v + 1 ·D[d];
end

end
S =

∑
m∈MD[m];

if v/(S · k) > 0.5 then
return T = 1;

else
return T = 0;

end

C. Generate machines with good separation

For fixed number of messages, we need to choose a set of M2 PFSAs with the best decoding and tamper detection
performance. It is important to indicate that (1) decoding error will be significantly lowered by increasing D(gi‖gj) according
to (10), and (2) the tampering detection error will be improved by making sure |H(g(δ))−H(g(δ′))| is large for δ′ − δ ≥ η,
according to (11). However, there is a trade-off here – to increase pairwise KL divergence, we want the machines to be spread
more evenly in the parameter space while, according to Theorem 5, to increase H(g(δ′))−H(g(δ), we need the machines to
stay away from being single-state, i.e. away from the µ = ν line.

Here, we describe briefly how we design G for experiment in Fig. 5. As a naive way, we start off with |M| randomly
generated µ’s in (0, 1), and for each of them we generate ν in the following way: if µ > .5, then we choose a ν randomly in
(0, µ− .2), and if µ ≤ .5, in (µ+ .2, 1.). Then, we use a hill-climbing algorithm to maximize minimum pairwise averaged KL
divergence, .5 (DKL (g1‖ g2 ) +DKL (g2‖ g1 )), between all pair machines. Let σ be step size, for a pair g(µ1,ν1) and g(µ2,ν2)

with minimum averaged KL divergence, we search the eight neighboring points, (µi ± σ, νi) and (µ, νi ± σ), i = 1, 2, for
improvement. We exit the search when there is no improvement to be found.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed a new information-theoretic coding scheme for information transfer over a public deletion
channel, subject to an active eavesdropper (aka jammer). Our coding scheme is based on probabilistic finite-state automata
(PFSA) and is proved to have (1) semi-universal property, in a sense that codebook need not be available at the decoder,
(2) small error probability when decoding messages, and (3) tamper-free property, which alarms the decoder about possible
tampering of the channel. To the best of our knowledge, exploiting PFSA’s in a secure and reliable information-theoretic
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ε = 0 ε = 0.05 ε = 0.10
50 .16 .12 .28 .26 .08 .34 .24 .18 .32

100 0 .26 .26 .06 .20 .26 .08 .08 .16
150 0 .16 .16 .02 .22 .14 0 .08 .08
200 0 .18 .18 0 .20 .20 0 .06 .06

ε = 0.15 ε = 0.20 ε = 0.25
50 .36 .02 .38 .32 .02 .34 .26 .10 .36

100 .08 .08 .16 .08 .02 .10 .14 .04 .18
150 0 .08 .08 .02 .02 .04 .02 .02 .04
200 0 0 0 0 .04 .04 0 .02 .02

Table I. The table above records the error rates of tamper detection algorithm for sending 10 messages through a channel with deletion
probability δ = .2. We generate 50 test sets containing k = 200 sequences, with 20 for each message. We assign randomly whether a
particular test set will be tampered or not. For simplicity, if a test set is tampered it will have a fixed deletion probability δ = .3. We run
the algorithm for input sequence of length 50, 100, 150, and 200, and for ε = 0, .05, .10, .15, .20, .25. For each block, the first column is
the rate of failing to detect a tampering, and the second column is the rate of false alarm of a tampering, and the last column is the sum
of two error rates. We can see that with increased cutoff value ε, we have significantly fewer false alarms without too much increase in the
rate of failing to detect a true tampering.

communication model is very new, yet very insightful. Promising results in both theoretical and experimental aspects of this
work lead to several research directions:
• To have an analytically better analysis of error probability, the convergence rate of likelihood in Theorem7 for general

PFSA is needed.
• We admit that the space of M2 is too small to have simultaneous vanishing error probability (with small n) in message

decoding and tamper detecting. To go beyond M2, we need to find an analytic way to compute entropy rate and KL
divergence for generalized PFSA.
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APPENDIX

A. Proof for Theorem 4

Following the standard notation in information theory, we use Xn to denote a random vector (X1, . . . , Xn) generated from
a PFSA g and H(Xn) to denote the entropy its entropy, that is H(Xn) = Hn(g). We can similarly define the conditional
entropy H(Xn|Xn−1). It is shown in [15] that limn→∞ 1

nH (Xn) = limn→∞H
(
Xn|Xn−1) for any stationary processes

{Xn}∞n=1. In order to compute the entropy rate, we can therefore focus on the latter limit. Let S ∼ p denote a random variable
indicating the initial state of the PFSA. We have

H
(
Xn|Xn−1) = H (Xn)−H

(
Xn−1)

= [H (Xn, S)−H (S|Xn)]−
[
H
(
Xn−1, S

)
−H

(
S|Xn−1)]

=
[
H (Xn, S)−H

(
Xn−1, S

)]
+
[
H
(
S|Xn−1)−H (S|Xn)

]
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s0 s10|.3

0|.6

1|.4

1|.7

(a) g1 ∈M2

t0 t10|.8

0|.5

1|.5

1|.2

(b) g2 ∈M2

(s0, t0) (s0, t1)

(s1, t0) (s1, t1)

0|.3

1|.7

0|.3

1|.70|.6

1|.4

0|.6

1|.4

(c) g∗c (g1‖ g2 )

(s0, t0) (s0, t1)

(s1, t0) (s1, t1)

0|.3

1|.7

0|.3

1|.70|.6

1|.4

0|.6

1|.4

(d) strongly connected component of g∗c (g1‖ g2 )

Fig. 6. The example above shows that the g∗c of two strongly connected PFSAs may not remain strongly connected. We can see that in this
case, gc (g1‖ g2 ) is equal to g1.

=
[
H (Xn|S) +H(S)−H

(
Xn−1|S

)
−H(S)

]
+
[
H
(
S|Xn−1)−H (S|Xn)

]

= H
(
xn|S,Xn−1)

︸ ︷︷ ︸
=:An

+
[
H
(
S|Xn−1)−H (S|Xn)

]
︸ ︷︷ ︸

=:Bn

.

Note that for any N ≥ 1

N∑

n=1

Bn =

N∑

n=1

H
(
S|Xn−1)−H (S|Xn) = H(S)−H

(
S|XN

)
≤ H(S) = H (p) .

Since Bn is nonnegative for each n and
∑N
n=1Bn is bounded from above, it follows that limn→∞Bn = 0. It remains to

analyze An. Notice that the state at time n is a deterministic function of S and Xn−1 (that is T(s,Xn−1)) and hence we can
write

H
(
Xn|S,Xn−1) =

∑

s′∈S
H
(
P̃s′,·

)
Pr
{
T(S,Xn−1) = s′

}
.

By induction, we have for any s′ ∈ S

Pr
{
T(S,Xn−1) = s′

}
=
∑

x∈X

∑

s′′∈S
Pr
{
T(s,Xn−2) = s′′

}
(Γx)s′′,s′

=
∑

s′′∈S
Pr
{
T(s,Xn−2) = s′′

}
Ps′′,s′ ,

and hence (
Pr
{
T(s,Xn−1) = s

})
s∈S =

(
Pr
{
T(s,Xn−2) = s

})
s∈S P = · · · = pPn−1 = p.

B. Proof for Theorem 6

Before we can prove Theorem 6, we first study synchronous compositions in more detail. Specifically, we shall show that
pgc(x) is independent of the choice of absorbing strongly connected component in g∗c (g1‖ g2 ). Essentially, gc (g1‖ g2 ) is
equivalent (to be defined later) to g1, which is key to the usage of synchronous composition in the proof of Theorem 6.
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t0 t10|.4

1|.8

0|.2

1|.6

(a) g3

(s0, t0) (s0, t1)

(s1, t0) (s1, t1)

0|.3

1|.7

0|.3

1|.7
0|.6

1|.4

0|.6

1|.4

(b) gc (g1‖ g3 )

Fig. 7. gc (g1‖ g3 ) is strongly connected. The stationary distribution of gc (g1‖ g3 ) is (.231, .231, .269, .269), while the stationary distribution
of g1 is (.462, .538), both rounded to 3 decimal places.

t0

t1 t2

0|.4
1|.6

0|.3

0|.7
0|.2

1|.8

(a) g4

(s0, t0) (s0, t1) (s0, t2)

(s1, t0) (s1, t1) (s1, t2)

0|.3

1|.7

0|.3

1|.7

0|.3

1|.7

0|.6

1|.4

0|.6

1|.4

0|.6

1|.4

(b) gc (g1‖ g4 )

Fig. 8. gc (g1‖ g4 ) is strongly connected. The stationary distribution of gc (g1‖ g4 ) = (.154, .154, .154, .179, .179, .179), while the stationary
distribution of g1 is (.462, .538), both rounded to 3 decimal places.

Definition 5. Let g1 = (S,X ,T1,P1) and g2 = (T ,X ,T2,P2) be two PFSAs with the same alphabet and let gc (g1‖ g2 )
be the synchronous composition of g1 and g2. Suppose that the state space of gc (g1‖ g2 ) is U ⊂ S × T . We then define
Ts = {t ∈ T : (s, t) ∈ U}.

We provided several examples of synchronous compositions in Figs. 6 to 9. We note that, in Fig. 7 and 8, the compositions
g∗c are naturally strongly connected, while those in Fig. 6 and 9 are not. For gc (g1‖ g2 ) in Fig. 6, we have Ts0 = {t0} and
Ts1 = {t1}, and for gc (g5‖ g2 ) in Fig. 9, we have Ts0 = {t0}, Ts1 = {t1}, Ts2 = {t0}, and Ts3 = {t1}.
Proposition 1. Let gc = gc (g1‖ g2 ) be any absorbing strongly connected component of g∗c (g1‖ g2 ) and let pgc be its stationary
distribution. Then we have

∑
t∈Ts (pgc)(s,t) = (pg1)s.

Proof. For any fixed initial state (s, t) and any sequence of symbols xn ∈ Xn, consider the sequence of states of the synchronous
composition

(s, t), (T1 (s, x1) ,T2 (t, x1)) , . . . , (T1 (s,xn) ,T2 (t,xn)) .

Let ns′,t′ be the number of indices i = 1, . . . , n such that
(
T1

(
s,xi

)
,T2

(
t,xi

))
= (s′, t′). Since the associated stochastic

process on states induced by gc is stationary and ergodic, we have ns′,t′

n → (pgc)(s′,t′) as n→∞ in probability. Consequently,
∑

t′∈Ts

ns′,t′

n
→
∑

t′∈Ts
(pgc)(s′,t′) .

Noticing that the left-hand side converges to (pg1)s, we obtain the result.

Figs. 7 and 8 provide examples of the proposition above.

Theorem 8. Let gc = gc (g1‖ g2 ) be any absorbing strongly connected component of g∗c (g1‖ g2 ). Then we have gc is equivalent
to g1, in the sense that pgc (x) = pg1 (x) for x ∈ X ∗.
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(a) g5

(s0, t0) (s1, t0) (s2, t0) (s3, t0)

(s0, t1) (s1, t1) (s2, t1) (s3, t1)

0|.5

1|.5

0|.7

1|.3

0|.8

1|.2

0|.4

1|.60|.5

1|.5

0|.7

1|.3

0|.8

1|.2

0|.4

1|.6

(b) g∗c (g5‖ g2 )
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(c) strongly connected component of g∗c (g5‖ g2 )

Fig. 9. gc (g5‖ g2 ) is the strongly connected component of g∗c (g5‖ g2 ) and it is equal to g5.

Proof. We first show ∑

t∈Ts
pgc (x|(s, t)) (pgc)(s,t) = pg1 (x|s) (pg1)s (12)

by induction on the length of x. We first note that the base case in which x is the empty sequence is given by Proposition 1.
Now assume that (12) holds for |x| = n. Follow the notation as in Definition 5, we have for sequence xx

∑

t∈Ts
pgc (xx|(s, t)) (pgc)(s,t) =

∑

t∈Ts
pgc (x|(s, t)) pgc (x|x, (s, t)) (pgc)(s,t)

=
∑

t∈Ts
pgc (x|(s, t))P1 (T1(s,x), x) (pgc)(s,t)

=

(∑

t∈Ts
pgc (x|(s, t)) (pgc)(s,t)

)
P1 (T1(s,x), x)

(a)
= pg1 (x|s) (pg1)s P1 (T1(s,x), x)

= pg1 (xx|s) (pg1)s ,

where equality in (a) follows from the induction hypothesis. Now we can write

pgc (x) =
∑

s∈S

∑

t∈Ts
pgc (x|(s, t)) (pgc)(s,t) =

∑

s∈S
pg1 (x|s) (pg1)s = pg1 (x) ,

from which the result follows.

Proof for Theorem 6. We use the same notation as in Appendix VII-A. We start the proof by defining two distributions on
the Cartesian product S × T × Xn. Let

g12 := gc (g1‖ g2 ) , g21 := gc (g2‖ g1 ) ,
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and p12 and p21 be the stationary distributions of g12 and g21, respectively. Here we make sure that we choose the same
absorbing strongly connected component for both compositions. We notice that g12 and g21 induce two distributions p12, and
p21 on S × T × Xn given by p12(s, t,xn−1) = p12(s, t)p12(xn−1|s, t) and p21(s, t,xn−1) = p21(s, t)p21(xn−1|s, t) where

p12(s, t) = (p12)(s,t) , p21(s, t) = (p21)(s,t) ,

p12 (xn|s, t) = pg1 (xn|s) =

n∏

i=1

P1

(
T1

(
s,xi−1

)
, xi
)
,

p21 (xn|s, t) = pg2 (xn|t) =

n∏

i=1

P2

(
T2

(
t,xi−1

)
, xi
)
.

Letting p12(xn) (p12(xn−1)) be the marginal of p12 over Xn (resp. Xn−1), we can write using the chain rule of KL divergence
(see e.g., [15, Theorem 2.5.3]) that

DKL (p12 (Xn) ‖ p21 (Xn) )−DKL
(
p12
(
Xn−1) ∥∥ p21

(
Xn−1))

= [DKL (p12 (S, T,Xn) ‖ p21 (S, T,Xn) )−DKL (p12 (S, T |Xn) ‖ p21 (S, T |Xn) )]

−
[
DKL

(
p12
(
S, T,Xn−1) ∥∥ p21

(
S, T,Xn−1))−DKL

(
p12
(
S, T |Xn−1) ∥∥ p21

(
S, T |Xn−1))]

=
[
DKL (p12 (S, T,Xn) ‖ p21 (S, T,Xn) )−DKL

(
p12
(
S, T,Xn−1) ∥∥ p21

(
S, T,Xn−1))]

−
[
DKL (p12 (S, T |Xn) ‖ p21 (S, T |Xn) )−DKL

(
p12
(
S, T |Xn−1) ∥∥ p21

(
S, T |Xn−1))]

=DKL
(
p12
(
Xn

∣∣S, T,Xn−1 ) ∥∥ p21
(
Xn

∣∣S, T,Xn−1 ))
︸ ︷︷ ︸

=:Cn

−


DKL (p12 (S, T |Xn) ‖ p21 (S, T |Xn) )︸ ︷︷ ︸

=:Dn

−DKL
(
p12
(
S, T |Xn−1) ∥∥ p21

(
S, T |Xn−1))

︸ ︷︷ ︸
Dn−1


 .

We first show that Cn is a constant that equals the desired quantity. Notice that for a fixed initial state (s, t) ∈ S × T and a
fixed sequence xn−1 ∈ Xn−1 we have Tc((s, t),x

n−1) =
(
T1(s,xn−1),T2(t,xn−1)

)
and hence

Cn =
∑

s′,t′

DKL

((
P̃g1

)
s′,·

∥∥∥∥
(
P̃g2

)
t′,·

)
· p12 {T1 (s,xn) = s′,T2 (t,xn) = t′}

=
∑

s′,t′

DKL

((
P̃g1

)
s′,·

∥∥∥∥
(
P̃g2

)
t′,·

)
· p12(s′,t′).

We next show that Dn converges in probability and in particular Dn − Dn−1 → 0. For a fixed initial state (s, t) and a
sequence xn, consider the sequence of states s,T1

(
s,x1

)
,T1

(
s,x2

)
, . . . ,T1 (s,xn), and let ns′,x = ns′,x(s) denote the

number of indices i such that T1(s,xi−1) = s′ and xi = x. We have for all t ∈ Ts

p12 (xn|s, t) =

n∏

i=1

P1

(
T1

(
s,xi−1

)
, xi
)

=
∏

s′,x

P1 (s′, x)
ns′,x = 2

∑
s′,x ns′,x log P1(s′,x) = 2n

∑
s′,x

n
s′,x
n log P1(s′,x).

Since the associated stochastic process on states is stationary and ergodic, we have ns′,x
n → (pg1)s′ P1(s′, x) in proba-

bility as n → ∞, and hence p12 (xn|s, t) → 2−nH(g1) in probability and independent of the initial state s. This implies
(p12 (s, t |xn ))(s,t) and (p21 (s, t |xn ))(s,t) converge in probability to the stationary distribution p12 and p21, respectively,
which shows that Dn converges and hence the theorem follows.
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