
Supplemental Material for "Wasserstein Soft Label Propagation on Hypergraphs:
Algorithm and Generalization Error Bounds"

Tingran Gao, Shahab Asoodeh, Yi Huang, and James Evans
The University of Chicago

{trg17, shahab, yhuang10, jevans}@uchicago.edu

Abstract
Below are the supplemental material for the paper "Wasser-
stein Soft Label Propagation on Hypergraphs: Algorithm and
Generalization Error Bounds" submitted to AAAI 2019

Proof of Lemma 1
The conditions on Φ can be written as[
ti
mγ

+ deg (i)

]
Φ (i)−

∑
j:j∼i

Φ (j) ≥ 0 1 ≤ i ≤ `

(1)

deg (i) Φ (i)−
∑
j:j∼i

Φ (j) = 0 `+ 1 ≤ i ≤ n

(2)
where deg (i) ≥ 1 is the degree of vertex i in graph G.
First, we assert that the minimum of Φ must be attained
among the vertices 1, · · · , `, for otherwise, if ` + 1 ≤ i∗ =
arg mini∈V Φ (i) ≤ n, then by (2) we have

deg (i∗) Φ (i∗) =
∑
j:j∼i∗

Φ (j)

≥
∑
j:j∼i∗

Φ (i∗) = deg (i∗) Φ (i∗)

which implies Φ (j) = Φ (i∗) for all vertices j ∼ i∗. This ar-
gument can be repeated until the constant value propagates
into the vertices within 1, · · · , `, and the assertion follows
from the connectivity of the graph. The assertion for the
maximum can be established analogously. Next we argue
that the minimum of Φ on the vertices of G must be non-
negative. Assume the contracy, i.e. the minimum attained at
i∗ ∈ [1, `] is strictly negative, then by (1) we have

0 ≤
[
ti∗
mγ

+ deg (i∗)

]
Φ (i∗)−

∑
j:j∼i∗

Φ (j)

=
ti∗
mγ

Φ (i∗) +
∑
j:j∼i∗

[Φ (i∗)− Φ (j)] < 0

where the strict inequalty follows from the counter-
assumption Φ (i∗) < 0. This contradiction completes our
proof that Φ ≥ 0 on the entire graph G.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Proof of Theorem 4
Following the same argument as in the proof of (Belkin,
Matveeva, and Niyogi 2004, Theorem 5), we can assume
without loss of generality that S, S′ differ by a new point
(vm, µm) ↔ (v′m, µ

′
m); the other case where only the mul-

tiplicities differ can be treated similarly. By our assumption
(22), the two averages differ by at most an amount of

|ȳs − ȳ′s| ≤
2Ms

m
.

For simplicity, introduce temporary notations

A := T` +mγL, B := T ′` +mγL.

Using the simple fact that the 2-norm dominate the∞-norm,
we have
‖Φ∗s − Φ′∗s ‖∞ ≤ ‖Φ

∗
s − Φ′∗s ‖2

≤ 2Ms

m
+
∥∥A−1 (ys − ȳsT`1)−B−1 (y′s − ȳ′sT ′`1)

∥∥
2

≤ 2Ms

m
+
∥∥A−1 (ys − ȳsT`1)−A−1 (y′s − ȳ′sT ′`1)

∥∥
2

+
∥∥A−1 (y′s − ȳ′sT ′`1)−B−1 (y′s − ȳ′sT ′`1)

∥∥
2
.

Standard functional analysis argument (the same perturba-
tion reasoning we gave in (18)) tells us that

∥∥A−1∥∥
2
≤

(mγλ1 − T )
−1. Together with the observation that

‖(ys − ȳsT`1)− (y′s − ȳ′sT ′`1)‖2
≤ ‖ys − y′s‖2 + ‖ȳsT`1− ȳ′sT ′`1‖2

≤ 2Ms +
2Ms

m
< 4Ms

we have∥∥A−1 (ys − ȳsT`1)−A−1 (y′s − ȳ′sT ′`1)
∥∥
2
≤ 4Ms

mγλ1 − T
.

In the meanwhile, noting that we also have
∥∥B−1∥∥

2
≤

(mγλ1 − T )
−1, and ‖A−B‖2 = ‖T ′` − T`‖2 ≤

√
2 <

3/2, we conclude that∥∥A−1 (y′s − ȳ′sT ′`1)−B−1 (y′s − ȳ′sT ′`1)
∥∥
2

=
∥∥B−1 (B −A)A−1 (y′s − ȳ′sT ′`1)

∥∥
2
≤ 3Ms

√
Tm

(mγλ1 − T )
2 .

Putting everything together completes the proof.



Proof of Lemma 2
By the equivalence between (4) and (14), it suffices to
show the following fact: for each fixed s ∈ [0, 1], if
max

{∣∣F−1µi
(s)
∣∣ , i = 1, · · · ,m

}
≤ φ (s) then ‖Φ∗s‖∞ ≤

φ (s), where Φ∗s is defined in (20). But this follows straight-
forwardly from the maximum principle.

Numerical Experiments
Label Propagation Algorithm
Alg. 1 details the label propagation algorithm we use to ob-
tain the results in the next two sections.

The functions Barycenter and WassDist can be any al-
gorithms that calculate the weighted Wasserstein barycenter
of a vector of labels L with weights W , and the Wasser-
stein distance between two input labels, respectively. Note
that we introduce another parameter α > 1 to adjust the
weights of vertices with known labels (in line 5) in order
to increase their influences to hyperedge barycenters. Sim-
ilar techniques are explored in (Shi, Osher, and Zhu 2017;
2018).

The algorithm relies on the alternating technique in min-
imizing (9) in each iteration. This technique consists of two
steps: (i) first calculates the barycenters bar(E) of all hy-
peredges E using the current labels of vertices they contain
and treats the derived barycenters as the labels of the hyper-
edges (lines 21 to 24), and (ii) then calculates the barycen-
ters, i.e. the new labels, of all vertices using labels of the
hyperedges incident to them, together with their targeted la-
bels if the latter are known (line 25 to 37). Due to the alter-
nating nature of the algorithm, we call it alternating label
propagation.

Stochastic Block Model
In the first two experiments, we run label propagation on
3-uniform hypergraphs generated using the stochastic block
model (SBM) over 100 vertices that are grouped into either
2 or 3 blocks. More specifically, the probability that a hy-
peredge {vi, vj , vr} exists is p = 0.01 if all vi, vj , and vr
belong to the same block and is q = 0.002 otherwise.

We set the soft labels to be b-dimensional Gaussian dis-
tributions, where b is the number of blocks. For any vertex
from block i, i = 1, . . . , b, whose label is known, we set the
mean of its label to be ei, where ei is the base vector with
the i-th coordinate being 1 and the rest being 0. The covari-
ance matrix of each known label is set to be 0.05Ib, where
Ib is the b-dimensional identity matrix. The predicted block
assignment of a vertex is the arg max of its predicted mean.
In both of the experiments, we use α = 20 and γ = 10. We
run the experiments with 5 to 15 vertices of known block as-
signment from each block, and the error bars are obtained by
averaging over 20 random selections of vertices with known
labels.

We compare the performance of our label propagation ap-
proach with with AdaBoost, random forest, and SVM in
Fig. 1. We use incidence matrix as the feature matrix in Ad-
aBoost, Random forest, and SVM to solve the classification
problem.

(a) SBM with 2 blocks (b) SBM with 3 block

Fig. 1. Comparison of traditional classification algorithms with hy-
pergraph label propagation on SBM.

SBM with two blocks: The hypergraph generated for this
experiment has two blocks of sizes 50 and 50, and 629 hy-
peredges with 388 of them containing vertices from one
block.
SBM with three blocks: The hypergraph generated for this
experiment has three blocks of sizes 33, 33, and 34, and 384
hyperedges with 182 of them has vertices from one block.

UCI datasets
In the next two experiments, we apply our label propagation
as a classification algorithm to the following two datasets
with categorical features from the UCI machine learning
repository:
Congressional Voting Records: This dataset contains vot-
ing records on 16 issues of the 2nd session of the 98th
Congress. We form a pair of hyperedges for each issue each
of which contains voters who voted "Yay" and "Nay", re-
spectively. For voters whose votes were missing, we don’t
include them in any of the hyperedges constructed for the
corresponding issue. This resilience to the missing data sam-
ples illustrates another advantage of applying hypergraph
label propagation to classification problems. We test label
propagation algorithm with 5, 10, 15, 20, 25, and 30 con-
gressmen and women from each party whose affiliation are
given.
Mushrooms: This dataset contains 22 features (e.g., shapes,
colors, and habitats, etc) of 8124 mushrooms. We form
97 hyperedges each of which contains mushrooms sharing
identical features. We choose 1000 edible and 1000 poi-
sonous mushrooms to run the experiment. We run the algo-
rithm in 6 cases where 10, 20, 30, 40, 50, and 60 mushrooms
are given labels from each category.

In both datasets, the soft labels are either 1-dimensional
Gaussian distributions N(+1, 0.01) and N(−1, 0.01) or 2-
dimensional Gaussian distributions N((1, 0), 0.01I2) and
N((0, 1), 0.01I2) depending on which class the labelled
sample belongs to. The predicted class of a vertex is ob-
tained as follows: For the 1-dimensional case, it is the sign
of the mean of its label and for the 2-dimensional case, it
is +1 if the first coordinate of the mean vector of its label
is larger than the second coordinate and −1 otherwise. For
both experiments, we set α = 10 and γ = 1. The error bars
are obtained by averaging 20 random selections of vertices
with known labels. We compare the performance of hyper-



graph label propagation (as a classification algorithm) with
SVM in Fig. 2.

(a) Congressional voting records (b) Mushrooms

Fig. 2. Comparison of SVM with hypergraph label propagation as
a classification algorithm.

Discussion of numerical experiments
The above experiments demonstrate that the hypergraph la-
bel propagation can serve as a powerful alternative classifi-
cation algorithm especially when the dataset is structured as
a network (for example as in SBM). The reason as to why the
traditional classification algorithms may fail on network-like
datasets (as illustrated in Fig. 1) is because for these datasets
almost all coordinates of a feature vector tend to be identi-
cal except for few of them. We can understand these features
as describing only local properties of the dataset. Therefore,
they can give rise to global characterizations of the datasets,
in a substantial way, only when properly “patched” together.
Label propagation algorithm provides a novel way of com-
bining features which is shown in Fig. 1 to outperform the
classical algorithms.

References
Belkin, M.; Matveeva, I.; and Niyogi, P. 2004. Regular-
ization and Semi-Supervised Learning on Large Graphs. In
International Conference on Computational Learning The-
ory, 624–638. Springer.
Shi, Z.; Osher, S.; and Zhu, W. 2017. Weighted nonlocal
laplacian on interpolation from sparse data. Journal of Sci-
entific Computing 73(2-3):1164–1177.
Shi, Z.; Osher, S.; and Zhu, W. 2018. Generalization of
the weighted nonlocal laplacian in low dimensional mani-
fold model. Journal of Scientific Computing 75(2):638–656.

Algorithm 1: Alternating label propagation algorithm
Data: hypergraph H = (V, E); a subset of vertices V0

with known labels l̄(v), ∀v ∈ V0; parameters
α, γ > 0, a condition EC for exiting the main
loop on line 19.

Result: labels l(v), ∀v ∈ V .
1 Randomly initialize labels l(v), ∀v ∈ V
2 for every E ∈ E do
3 for every v ∈ E do
4 if v ∈ V0 then
5 WE(v) = α
6 else
7 WE(v) = 1
8 end
9 end

10 end
11 for every v ∈ V do
12 for every E ∈ E incident to v do
13 wv(E) = 1/|E|
14 end
15 if every v ∈ V0 then
16 append vector Wv with γ
17 end
18 end
19 while EC is not met do
20 Initialize loss = 0
21 for every E ∈ E do
22 LE = (l(v))v∈E
23 l(E) = Barycenter (WE , LE)
24 end
25 for every v ∈ V do
26 Lv = (l(E))E incident to v
27 if v ∈ V0 then
28 append Lv with l̄(v)
29 end
30 l(v) = Barycenter (Wv, Lv)
31 for every E ∈ E incident to v do
32 loss = loss+Wv(E)·WassDist(l(v), l(E))
33 end
34 if v ∈ V0 then
35 loss = loss+ γ ·WassDist

(
l(v), l̄(v)

)
36 end
37 end
38 end


