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The emergence of large-scale data and ubiquitous data-driven 
modelling has sparked widespread government interest in the 
possibility of predictive policing1–5, that is, predicting crime 

before it happens to enable anticipatory enforcement. Such efforts, 
however, do not document the distribution of crime in isolation but 
rather its complex relationship with policing and society. In this 
study, we re-conceptualize the process of crime prediction, build 
methods to improve upon the state of the art and use this to diag-
nose both the distribution of reported crime and biases in enforce-
ment. The history of statistics has co-evolved with the history of 
criminal prediction, but also with the history of enforcement cri-
tique. Siméon Poisson published the Poisson distribution and his 
theory of probability in an analysis of the number of wrongful con-
victions in a given country6. Andrey Markov introduced Markov 
processes to show that dependencies between outcomes could still 
obey the central limit theorem to counter Pavel Nekrasov’s argu-
ment that, because Russian crime reports obeyed the law of large 
numbers, “decisions made by criminals to commit crimes must all 
be independent acts of free will”7.

In this study, we conceptualize the prediction of criminal reports 
as that of modelling and predicting a system of spatio-temporal point 
processes unfolding in a social context. We report an approach to 
predict crime in cities at the level of individual events, with predic-
tive accuracy far greater than has been achieved in the past. Rather 
than simply increasing the power of states by predicting the when 
and where of anticipated crime, our tools allow us to audit them for 
enforcement biases, and garner deep insight into the nature of the 
dynamical processes through which policing and crime co-evolve 
in urban spaces.

Classical investigations into the mechanics of crime8–10 have 
recently given way to event-level crime predictions that have 
enticed police forces to deploy them preemptively and stage inter-
ventions targeted at lowering crime rates. These efforts have gen-
erated multivariate models of time-invariant hotspots11–13 and 
estimate both long- and short-term dynamic risks1–3. One of the 

earliest approaches to predictive policing was based on the use of 
epidemic-type aftershock sequences4,5, originally developed to 
model seismic phenomena. While these approaches have suggested 
the possibility of predictive policing, many achieve only limited 
out-of-sample performance4,5. More recently, deep learning archi-
tectures have yielded better results14. Machine learning and artificial 
intelligence-based systems, however, are often black boxes produc-
ing little insight regarding the social system of crime and its rules 
of organization. Moreover, the issue of how enforcement interacts 
with, modulates and reinforces crime has rarely been addressed in 
the context of precise event predictions.

A forecast competition for identifying hotspots prospec-
tively in the City of Portland was organized by the National 
Institute of Justice (NIJ) in 2017 (https://nij.ojp.gov/funding/
real-time-crime-forecasting-challenge), which led to the develop-
ment of multiple effective approaches15,16 leveraging point processes 
to model event dynamics, but not accounting for long-range and 
time-delayed emergent interactions between spatial locations. Such 
approaches, although laudable for demonstrating that event-level 
prediction is possible with actionable accuracy, do not allow for 
the elucidation of enforcement bias. Informing predictions with the 
emergent structure of interactions allows us to significantly outper-
form solutions submitted to the NIJ challenge and simulate realistic 
enforcement alternatives and consequences.

Results and discussion
Here we show that crime in cities may be predicted reliably one 
or more weeks in advance, enabling model-based simulations that 
reveal both the pattern of reported infractions and the pattern of 
corresponding police enforcement. We learn from publicly recorded 
historical event logs, and validate on events in the following year 
beyond those in the training sample. Using incidence data from the 
City of Chicago, our spatio-temporal network inference algorithm 
infers patterns of past event occurrences and constructs a communi-
cating network (the Granger network) of local estimators to predict 

Event-level prediction of urban crime reveals a 
signature of enforcement bias in US cities
Victor Rotaru1,2, Yi Huang1, Timmy Li1,2, James Evans   3,4,5 and Ishanu Chattopadhyay   1,4,6 ✉

Policing efforts to thwart crime typically rely on criminal infraction reports, which implicitly manifest a complex relationship 
between crime, policing and society. As a result, crime prediction and predictive policing have stirred controversy, with the 
latest artificial intelligence-based algorithms producing limited insight into the social system of crime. Here we show that, 
while predictive models may enhance state power through criminal surveillance, they also enable surveillance of the state by 
tracing systemic biases in crime enforcement. We introduce a stochastic inference algorithm that forecasts crime by learning 
spatio-temporal dependencies from event reports, with a mean area under the receiver operating characteristic curve of ~90% 
in Chicago for crimes predicted per week within ~1,000 ft. Such predictions enable us to study perturbations of crime patterns 
that suggest that the response to increased crime is biased by neighbourhood socio-economic status, draining policy resources 
from socio-economically disadvantaged areas, as demonstrated in eight major US cities.

NaTURE HUmaN BEHaVIoUR | VOL 6 | AUGUSt 2022 | 1056–1068 | www.nature.com/nathumbehav1056

mailto:ishanu@uchicago.edu
https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge
https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge
http://orcid.org/0000-0001-9838-0707
http://orcid.org/0000-0001-8339-8162
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-022-01372-0&domain=pdf
http://www.nature.com/nathumbehav


ArticlesNature HumaN BeHaviour

future infractions. In this study, we consider two broad categories 
of reported criminal infractions: violent crimes consisting of homi-
cide, assault and battery, and property crimes consisting of burglary, 
theft and motor vehicle theft. The number of individuals arrested 
during each recorded event is modelled separately, allowing us to 
investigate the possibility and pattern of enforcement bias. We note 
that, while some of these crimes may be more under-reported than 
others, the relationship between arrests and reports traces police 
action in response to crime reportage.

We begin by processing event logs to obtain time series of rel-
evant events, stratified by location and discretized in time, yield-
ing sequential event streams for (1) violent crime (v), (2) property 
crime (u) and (3) number of arrests (w) (Fig. 1a–c). To infer the 
structure of the Granger network, we learn a finite state probabilis-
tic transducer17,18 for each possible source–target pair s, r and time 
lag Δ (Fig. 1d), yielding ~2.6 billion modelled associations. Links in 
the network are retained as they predict events at the target bet-
ter than the target can predict itself19. More details on the problem 
characteristics and performance are provided in Tables 1 and 2 and 
Extended Data Table 1, respectively.

For Chicago, we make predictions separately for violent and 
property crimes, individually within spatial tiles roughly 1,000 ft 
across and time windows of 1 day, approximately a week in advance, 
with an area under the receiver operating characteristic curves 
(AUCs) ranging from 80% to 99% across the city (see below for 
alternative measures tuned to the concerns of policing policy). We 
summarize our prediction results in Fig. 2, where panels a and b 
illustrate the geospatial scatter of AUCs obtained for different spa-
tial tiles and types of crime, while panel c shows the distribution 
of AUCs. The out-of-sample predictive performance remains stable 
over time. Our predictions for successive years (each using the three 
preceding years for training and one year for out-of-sample testing; 
Extended Data Fig. 1) shows little variation in the average AUC. 
Inspecting excerpts of the average daily crime rate for successive 
years also demonstrates a close match between actual and predicted 
behaviour (Extended Data Fig. 2a,c,e). Meanwhile, Extended Data 
Fig. 2b,d,f illustrate how the Fourier coefficients match up, show-
ing that we are able to capture crime periodicities at weekly and 
bi-weekly scales, and beyond.

Unlike previous efforts1–5, we do not impose predefined spa-
tial constraints. In contrast to the contiguous diffusion encoun-
tered in physical systems, criminal reportage may spread across 
the complex landscape of a modern city unevenly, with regions 
hyperlinked by transportation networks, socio-demographic 
similarity and historical collocation, which cannot be captured 
with spatial diffusion models20. Rather than assuming that distant 
events across the city will have a weaker influence on prediction 
compared with those physically closer in space or time, we probe 
the topological structure emergent from inferred dependencies to 
estimate the shape, size and organization of neighbourhoods that 
best predict events at each location. The results (Fig. 2d,e) show 
that the situation is complex, with the locally predictive neigh-
bourhoods varying widely in geometry and size, which implies 
that restricting the analysis to small local communities within the 
city is suboptimal for crime prediction and enforcement analy-
ses. To analyse whether the effect of reported criminal infrac-
tions diffuses outward in space and time, we simply calculate the 
spatio-temporal distances of predictive dependencies, then aver-
age across all neighbourhoods in the city, revealing a rapid decay 
with the time delay in the diffusion rates (Fig. 2f). Interestingly 
we find that the property and violent crimes differ in their rates of 
predictive diffusion (Fig. 2f). While signals from property crime 
decay rapidly, within days, violent reported events appear to shape 
the dynamics for weeks in the future. These differences in diffu-
sion appear to manifest how people differentially mimic and pro-
cess exposure to violence21,22.

Forecasting crime by analysing historical patterns has been 
attempted before23 (see also the unpublished manuscript at https://
arxiv.org/abs/1806.01486). State-of-the-art approaches use machine 
deep learning tools based on recurrent and convolutional neu-
ral networks. In ref. 23, the authors train a neural network model 
to predict next-day events for 60,348 sample points in Chicago. 
The model is trained on crime statistics, demographic make-up, 
meteorological data and Google Street View images to track graffiti, 
achieving an out-of-sample AUC of 83.3%. Our AUC is demonstra-
bly higher (Table 2 and Extended Data Table 1), and we predict with 
significantly less data (only past events) and 7 days into the future 
(instead of the next day). Additionally, the use of demographics and 
graffiti is problematic because of the possibility of introducing racial 
and socio-economic bias, with dubious causal value. In ref. 24, the 
authors combine convolutional and recurrent neural networks with 
weather, socio-economic, transportation and crime data to predict 
next-day crime counts in Chicago. As spatial tiles, those authors use 
standard police beats, which break up Chicago into 274 regions. 
Police beats reflect the classical notion of neighbourhoods and 
measure approximately 1 square mile on average25. In comparison, 
our spatial times are approximately 0.04 square miles, represent-
ing a 2,500% higher resolution. This model achieves a classification 
accuracy of 75.6% for Chicago, in comparison with our accuracy 
of >90% (Table 2). While this competing model tracks more crime 
categories, it is limited to next-day predictions with significantly 
coarser spatial resolution. We also compare the predictive ability of 
naive autoregressive baseline models (Methods and Extended Data 
Table 2), which perform poorly but provide a yardstick for mean-
ingful comparison of our claimed performance estimates, which 
underwrite the application of our approach in revealing emergent 
biases (Figs. 3 and 4). Apart from AUC and accuracy, we also report 
other common performance metrics in Table 2, namely the specific-
ity obtained at a fixed sensitivity of 80% and the precision or posi-
tive predictive value (PPV).

We also compute the predictive accuracy index (PAI) and the 
prediction efficiency index (PEI) achieved for each city considered. 
The PAI16 is defined to be the normalized event rate in identified 
hotspots (tiles predicted to have events), while the PEI16 is the ratio 
of the PAI achieved to its maximum achievable value by the same 
algorithm (thus bounded between 0 and 1; Crime prediction met-
rics section). The PAI and PEI have emerged as metrics of choice for 
crime models owing to the need to maximize the volume of crime 
in predicted hotspots to enable law enforcement. Importantly, PAI/
PEI comparisons are distinct from AUC calculations. Indeed, an 
algorithm can achieve a high AUC but poor PAI or PEI scores. Our 
PAI and PEI scores indicate strong performance, with PEI values 
approaching 1.0 (Fig. 5a).

Finally, a head-to-head comparison of the efficacy of our 
approach over reported tools is obtained for data used in a recent 
crime forecast challenge hosted by the NIJ. The Portland Police 
Department provided crime data from March 2012 up to the end 
of February 2017, and participants were asked to forecast crime 
hotspots for four types of incident (burglary, motor vehicle theft, 
street crime and all calls for service) over the months of March, 
April and May 2017. In particular, participants were asked to define 
a grid restricted to Portland boundaries and to predict hotspot grid 
cells for each type of crime over several forecasting windows. This 
challenge was a true prospective forecasting test as the validation 
time period was in the future, non-existent at the time of submis-
sion. Forecasts were made for 1 week, 2 week, 1 month, 2 month 
and 3 month time windows and scored with the PAI and PEI. 
These two metrics are not equivalent, as illustrated in the NIJ chal-
lenge results, with different teams winning in different categories 
with respect to the different metrics. While a natural equivalency 
between PAI and PEI has been suggested16, frameworks that opti-
mize them both have not been reported previously. Our results on 
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Fig. 1 | Crime data and modelling approach. a,b, Violent crimes (a) and property crimes (b) recorded within the 2 week period between 1 and 15 April 
2017. c, Our modelling approach. We break a city into small spatial tiles approximately 1.5 times the size of an average city block and compute models 
that capture multi-scale dependencies between the sequential event streams recorded at distinct tiles. We treat violent and property crimes separately, 
and show that these categories have intriguing cross dependencies. d, An illustration of our modelling approach. For example, to predict property crimes 
at some spatial tile r, we proceed as follows: Step 1: we infer the probabilistic transducers that estimate the event sequence at r by using as input the 
sequences of recorded infractions (of different categories) at potentially all remote locations (s, s′ and s″ are shown), where this predictive influence might 
transpire over different time delays (a few are shown on the edges between s and r). Step 2: we combine these weak estimators linearly to minimize zero–
one loss. the inferred transducers can be thought of as inferred local activation rules that are then linearly composed, reversing the approach of linearly 
combining the input and then passing through fixed activation functions in standard neural net architectures. the connected network of nodes (variables) 
with probabilistic transducers on the edges forms the Granger network.
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the data released for this challenge are shown in Fig. 5b, where we 
outperform the best-performing team in 119 of 120 categories, only 
under-performing on street crimes at the 3 month horizon.

With the above-discussed predictive performance establishing 
the validity of our models, we run a series of computational experi-
ments that perturb the rates of violent and property crimes, then 
log the resulting alterations in future event rates across the city. By 
inspecting the effect of socio-economic status (SES) on the per-
turbation response, we investigate whether enforcement and pol-
icy biases modulate outcomes. The inferred stress response of the 
city suggests the presence of a socio-economic enforcement bias  
(Fig. 3). In wealthier neighbourhoods, the response to elevated 
crime rates is increased arrests, while arrest rates in disadvantaged 

neighbourhoods drop but the converse does not occur (Fig. 3e,f). 
We argue that resource constraints on law enforcement, combined 
with biased prioritization towards wealthier neighbourhoods, result 
in reduced enforcement across the remainder of the city. Thus, our 
results align with suspected enforcement bias within US cities that 
parallels widely discussed notions of suburban bias in high-SES 
suburbs26,27. While self-evident at the scale of countries and regions, 
the existence of unequal resource allocation in cities, where political 
power and influence concentrate in selective, high-SES neighbour-
hoods, has been widely suspected28–31. Our analysis corroborates 
this contention, which shows up robustly for all years analysed, 
going back over one and a half decades in Chicago. Extended Data 
Figs. 3–5 show that these patterns are stable over the time period 

Table 1 | Crime event log information for the cities considered

atlanta austin Detroit Los angeles Philadelphia San Francisco Chicago Portland

No. of variables1 510 1,082 1,161 3,287 1,037 975 3,826 9,354

Temporal 
resolution (days)

2 1 1 1 1 1 1 3

Bounding box of 
modelled region

33.65° to 
33.86° N, 
84.54° to 
84.31° W

30.14° to 
30.48° N, 
97.89° to 
97.63° W

42.30° to 
42.45° N, 
83.28° to 
82.91° W

33.71° to 
34.33° N, 
118.65° to 
118.16° W

39.88° to 
40.12° N, 
75.27° to 
74.96° W

37.71° to 37.81° 
N, 122.51° to 
122.36° W

41.64° to 42.06° 
N, 87.88° to 
87.52° W

45.23° to 
45.81° N, 
123.05° to 
122.22° W

Spatial resolution 983′ × 983′ 983′ × 983′ 983′ × 983′ 983′ × 983′ 983′ × 983′ 983′ × 983′ 951′ × 1006′ 591′ × 591′

Spatial exclusion 
threshold2

2.5% 2.5% 2.5% 2.5% 5.0% 2.5% 5.0% 2.0%

Training period 1 January 
2014–31 
December 
2018

1 January 
2016–31 
December 
2018

1 January 
2012–31 
December 
2014

1 January 
2016–31 
December 
2018

1 January 
2016–31 
December 
2018

1 January 2014–
31 December 
2016

1 January 2014–
31 December 
2016

1 March 
2012–28 
February 2017

Test period 1 January 
2019–20 July 
2019

1 January 
2019–11 April 
2019

1 January 
2015–11 April 
2015

1 January 
2019–11 April 
2019

1 January 
2019–11 April 
2019

1 January 2017–
11 April 2017

1 January 2017–11 
April 2017

1 March 
2017–31 May 
2017

Prediction horizon 
(days)

6 3 3 3 3 3 7 9

Violent crime 
statistics

Event count 
2,649, rate 
3.98%

Event count 
20,132, rate 
5.45%

Event count 
20,922, rate 
3.72%

Event count 
72,355, rate 
4.83%

Event count 
33,803, rate 
8.11%

Event count 
23,317, rate 
7.16%

Event count 
179,274, rate 
7.7%

See table 1

Property crime 
statistics

Event count 
23,522, rate 
4.51%

Event count 
88,929, rate 
6.22%

Event count 
39,840, rate 
3.30%

Event count 
205,435, rate 
5.49%

Event count 
85,683, rate 
9.02%

Event count 
197,835, rate 
12.83%

Event count 
263,661, rate 
7.0%

See table 1

Data source opendata.
atlantapd.org

data.
austintexas.
gov

data.
detroitmi.gov

data.lacity.org www.
opendataphilly.
org

data.sfgov.org data.
cityofchicago.org

nij.ojp.gov

1No. of variables indicates the total number of time series considered for violent and property crimes. 2tiles with less than the threshold event rate were excluded.

Table 2 | Prediction performance with Granger networks for seven US cities

City Property crimes Violent crimes

Specificity1 aUC acc.2 PPV3 Specificity aUC acc. PPV

atlanta 0.68 0.90 0.84 0.39 0.71 0.88 0.84 0.38

austin 0.66 0.87 0.82 0.40 0.66 0.88 0.83 0.38

Detroit 0.72 0.90 0.86 0.37 0.66 0.89 0.84 0.35

Philadelphia 0.64 0.87 0.81 0.48 0.65 0.87 0.81 0.47

Los angeles 0.66 0.84 0.83 0.39 0.65 0.84 0.83 0.36

San Francisco 0.67 0.86 0.80 0.52 0.65 0.86 0.81 0.42

Chicago 0.68 0.87 0.93 0.43 0.67 0.87 0.94 0.46
1Median specificity at 80% sensitivity 2Accuracy, calculated as max sensitivity × frequency + specificity × (1 − frequency). 3Calculated as max sensitivity×frequency

sensitivity×frequency+(1−specificity)×(1−frequency).
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we analyse. Additionally, Extended Data Fig. 3 shows the effect of 
perturbations across all variables, suggesting that crime reduction 
from perturbations seems most effective in regions with high crime 
rates, acknowledging confounding with SES.

The Granger network allows for precise simulation of the impact 
of complex local and global event patterns and has the potential 
to emerge as an important tool in policy-making. Thus, empirical  

validations of model predictions are important. To corroborate 
claimed disparities in the enforcement response without using our 
inferred models, we identify similar, naturally occurring patterns in 
crime and arrest rates across the City of Chicago. Without the use of 
our models, it is difficult to obtain uniform event stimuli across the 
city. In one approach, we exploit the seasonality of crime and com-
pare summer months against late winter. Figure 6a (upper panel) 
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versus negative change in arrest rate reveals a strong preference favouring high-SES locations. If neighbourhoods are doing better socio-economically, 
increased crime predicts increased arrests. A strong converse trend is observed in predictions for lower-SES, poor and disadvantaged neighbourhoods, 
suggesting that, under stress, wealthier neighbourhoods drain resources from their disadvantaged counterparts.
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shows the increase in violent and property crimes from February to 
June/August, averaged across rich and poor neighbourhoods over 
4 years from 2014 to 2017 (along with 95% confidence bounds). 
Here, we define rich neighbourhoods as communities with hard-
ship index <20 (although the results are not sensitive to the choice 
of this threshold). We observe that the average percentage increase 
in the event rate from late winter to summer is broadly comparable 
across the city, thus approximating a uniform perturbation in crime 
rate. As shown in Fig. 6a (lower panel), the corresponding deviation 
of the mean percentage change in the arrest rate from the city-wide 
average reflects the conclusions above, with wealthier communities 

seeing an increase in the arrest rate per unit event with the seasonal 
rise in crime while others experience a draw-down.

Changes in the enforcement response from winter to summer 
months do not necessarily establish that an up-tick in arrests in 
high-SES areas is associated with a down-tick elsewhere in the near 
future. Thus, we carry out a more granular interrogation of the raw 
crime data as follows: Aggregating data on the number of daily arrests 
over Chicago communities (Chicago has 77 community areas32), we 
compute the correlation between the daily change in the total num-
ber of arrests and their 1 day delayed versions in neighbouring com-
munities with more economic hardship (higher hardship indices). 

a Mean ~0.89

b Mean ~0.84

c Mean ~0.86

d Mean ~0.90

e Mean ~0.87

f Mean ~0.87

AUC
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Detroit
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Violent crime perturbation
Property crime perturbation
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Fig. 4 | Prediction of property and violent crimes across major US cities and the dependency of the perturbation response on the SES of local 
neighbourhoods. a–f, AUCs obtained in six major US cities: Atlanta (a), Philadelphia (b), San Francisco (c), Detroit (d), Los Angeles (e) and Austin (f), 
chosen on the basis of the availability of detailed event logs in the public domain. All of these cities show comparably high predictive performance.  
g, Regression against poverty (standard error bars). Results obtained by regressing crime rate and perturbation response against SES variables (shown 
here for poverty, as estimated by the 2018 US census). Note that, while the crime rate typically goes up with increasing poverty, the number of events 
observed 1 week after a positive perturbation of 5–10% increase in crime rate is predicted to fall with increasing poverty. We suggest that this decrease can 
be explained by disproportionate reallocation of enforcement resources away from disadvantaged neighbourhoods in response to increased event rates, 
leading to a smaller number of reported crimes.
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For each community s, we denote as μ(s) the value of this correlation 
minimized over all communities neighbouring s. Figure 6b (upper 
panel) shows the variation of μ(s) with h(s), the hardship index of 
community s. We see that the arrest rate change in wealthier com-
munities is more strongly anti-correlated with the 1-day-delayed 
arrest rate change in neighbouring more disadvantaged communi-
ties. Figure 6b (lower panel) shows the correlation of μ(s) with the 
average hardship index of communities neighbouring s, computed 
separately within community groups of similar economic status. We 
observe that, for wealthier communities, the anti-correlation between 
the daily change in arrests and its delayed version in lower-SES neigh-
bouring communities is stronger the more economically disadvan-
taged the neighbours are. The higher the average hardship index of 
the neighbours, the more negative μ is, leading to more negative val-
ues in Fig. 6b (lower panel). We also see that this effect vanishes and 
eventually reverses as the SES of the focal community itself decreases, 
that is, as their economic status degrades. These direct observations 
lend credence to the model-based indication of enforcement bias 
arising from differential resource allocation.

Beyond Chicago, we analyse criminal event logs available in 
the public domain for seven additional major US cities: Detroit, 
Philadelphia, Atlanta, Austin, San Francisco, Los Angeles and 
Portland. In all these cities, we obtain comparably high perfor-
mance in predicting violent and property crimes, with average AUC 
values ranging between 86% and 90% (Fig. 4a–f and Supplementary 
Fig. 1). In addition, our observed pattern of perturbation responses 
in Chicago, which suggests de-allocation of policing resources 
from disadvantaged to advantaged neighbourhoods, is replicated 
in all these cities. While the crime rate increases with degrad-
ing SES status of local neighbourhoods, the number of predicted 
events per week after a positive 5–10% increase in crime rate goes 
down. Thus, increasing the crime rate leads to a smaller number 
of reported crimes, a pattern that holds more often in lower-SES 
neighbourhoods.

Our analysis also sheds light on continuing debate over the 
choice for neighbourhood boundaries in modelling crime in cit-
ies33–36. Figure 2d–f demonstrates that, despite apparent natural 
boundaries, predictive signals are often communicated over large 
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Fig. 5 | The PaI and PEI calculated for seven metropolitan cities. a, the calculated PAI and PEI values. b, A comparison of the PAI and PEI achieved 
by our approach (Granger network) against the best-performing teams in a crime forecast challenge hosted by the NIJ in 2017 (https://nij.ojp.gov/
funding/real-time-crime-forecasting-challenge), where teams attempted to predict hotspots for five different crime categories over different horizons 
prospectively. Our approach outperforms the teams in all but 1 (highlighted) of 120 categories.
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distances and decay slowly, especially for violent crimes. More 
importantly, this study reveals how the ‘correct’ choice of spatial 
scale should not be a major issue when using sophisticated learning 
algorithms where optimal scales can be inferred automatically. We 
find that there exists a skeleton set of spatial tiles that bound pre-
dictive dependencies on overall event patterns (Extended Data Fig. 
6). These induce a cellular decomposition of the city that identifies 
functional neighbourhoods, where the cell size adapts automatically 
to local event dynamics.

Limitations and conclusion
Our ability to probe for the extent of enforcement bias is limited by 
our dataset on criminal reportage, without the use of direct data on 
the spatial distribution of police. In large US cities, place and race are 
often synonymous37,38. Disproportionate police responses in commu-
nities of colour can contribute to biases in event logs, which might 
propagate into inferred models. This possibility has elicited signifi-
cant push-back against predictive policing39. Our approach is free 
from manual encoding of features (and thus resistant to the implicit 
biases of the modellers themselves), but biases arising from dispro-
portionate crime reportage and surveillance almost certainly remain. 
We doubt that any amount of scrubbing or clever statistical controls 
can reliably erase such ecological patterning of apparent crime. Any 
policy informed by our results must keep this caveat in mind.

Differences in the extent to which different communities trust 
law enforcement are important in analysing crime and enforcement. 
Diverse communities are often less inclined to call law enforce-
ment for help or to report criminal acts that they might witness, 
thus obfuscating underlying crime rates. To mitigate these effects, 

we only consider events, such as homicide, battery, assault, motor 
vehicle theft and burglary, that are much less likely to be optionally 
reported by residents, or those which are directly observed by police 
officers. This is perhaps more true for the types of violent crime con-
sidered, and our predictive performance and conclusions replicate 
for both violent and property crimes. The exception is the City of 
Portland, where we do consider ‘street crimes’ and ‘all calls for ser-
vice’ to compare our performance with the NIJ forecast challenge. 
Our performance holds up in these categories (Fig. 5b), suggesting 
that these differential reporting issues may not significantly affect 
our results, but we note that we outperform the competition to a 
lesser degree for these categories. Finally, for the City of Chicago, we 
consider arrests as a distinct variable in addition to crimes logged. 
Importantly, we only consider arrests related to the crimes consid-
ered, mitigating the effects of potential over/under-reporting if all 
such events were to be included.

Despite our caution, one of our key concerns in authoring this 
study is its potential for misuse, an issue with which predictive polic-
ing strategies have struggled40. More important than making good 
predictions is how such capability will be used. Because policing 
is as much ‘person based’ as ‘place based’41,42, sending police to an 
area, regardless of how small that area is, does not dictate the opti-
mal course of action when they arrive, and it is conceivable that 
good predictions (and intentions) can lead to over-policing or police 
abuses. For example, our results may be falsely interpreted to mean 
that there is ‘too much’ policing in low-crime (often predominantly 
White) communities, and too little policing in higher-crime (often 
more racially and ethnically diverse) neighbourhoods. A policy 
based on such a misinterpretation might ramp up enforcement in 
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Fig. 6 | Direct observations of the differential response of arrest rate changes with SES variables. a, Upper: increase in violent and property crime rates 
from February to June or August, averaged over rich (hardship index <20) and poor neighbourhoods (hardship index >20) over 4 years from 2014 to 2017. 
Error bars show 95% confidence bounds. the average percentage increase in the event rate from late winter to summer is more or less comparable across 
the city. Lower: the deviation of the mean percentage change in the arrest rate per unit change in crime rate with respect to the city-wide average varies 
with the average SES of the communities. Wealthier communities see an increase in the arrest rate per unit event, while others experience a draw-down. 
b, Upper: correlation between the daily change in the number of arrests and their 1 day delayed versions in neighbouring communities with higher hardship 
indices (μ), versus the hardship index of the communities themselves. Lower: correlation of μ with the average hardship index of neighbouring communities, 
computed within community groups of similar SES. these results illustrate that, in wealthier communities, the higher the average hardship index of its 
neighbours, the more negative the μ, whereas this effect vanishes and eventually reverses as communities themselves become poorer. Right: locations of the 
top two community clusters as per their average hardship indices on a map of Chicago. Note, community colours indicate cluster membership.
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Black and Latino neighbourhoods, creating a harmful feedback of 
sending more police to areas that might already feel over-policed but 
under-protected43. Instead, our results recommend changes in policy 
that result in more equitable, need-based resource allocation, with 
reduced impact based on the SES of individual communities. The 
tools reported here can then be used to track the extent to which 
such policies approach this trace of equitable enforcement allocation.

Even with its current limitations, our approach is an addition to 
the toolbox of computational social science, enabling validation of 
social theory from observed event incidence, supplementing the use 
of measurable proxies and potential biases in questionnaire-based 
data collection strategies. While classical approaches44–47 broaden 
our understanding of the societal forces shaping both urban and 
regional landscapes, these approaches have neither successfully 
attempted to forecast individual infraction reports nor revealed how 
these predictive patterns manifest systematic enforcement bias. In 
this study, we show how the ability of Granger networks to predict 
such events not only allows precise intervention but also advances 
the diagnosis and explanation of complex social patterns. We 
acknowledge the danger that powerful predictive tools place in the 
hands of over-zealous states in the name of civilian protection, but 
here we demonstrate their unprecedented ability to audit enforce-
ment biases and hold states accountable in ways inconceivable in 
the past. We encourage widespread debate regarding how these 
technologies are used to augment state action in public life and call 
for transparency that allows for continuous evaluation, reconsidera-
tion and critique.

methods
In this study, we use historical geolocated incidence data of criminal infractions to 
model and predict future events in Chicago, Philadelphia, San Francisco, Austin, 
Los Angeles, Detroit and Atlanta. Each of the cities considered has a specific 
temporal and spatial resolution, which are optimized to maximize predictive 
performance (Table 1). The predictive performance obtained in these cities is 
enumerated in Table 2 and Extended Data Table 1. The distribution of AUCs 
obtained in Chicago for earlier years (2014–2017, predicted individually) is shown 
in Extended Data Fig. 1.

Data source. The sources of crime incidence data used in this study for the 
different US cities are enumerated in Table 1. These logs include spatio-temporal 
event localization along with the nature, category and a brief description of the 
recorded incident. For the City of Chicago, we also have access to the number of 
arrests made during or as a result of each event. For Chicago, the log is updated 
daily, keeping current with a lag of 7 days, and we make predictions for each of 
the years 2014–2017 (using three years before the target year for model inference 
and one year for out-of-sample validation) for the prediction results shown in Fig. 
1. The evolving nature of the urban scenescape48 necessitates that we restrict the 
modelling window to a few years at a time. The length of this window is decided 
by trading off the loss of performance from shorter data streams to ignoring the 
evolution of the underlying generative processes with longer streams. The training 
and testing periods of the other cities are presented in Table 1. In this study, we 
consider two broad categories of criminal infractions: violent crimes consisting 
of homicides, assault, battery, etc. and property crimes consisting of burglary, 
theft, motor vehicle theft, etc. Drug crimes are excluded from our consideration 
due to the possibility of ambiguity in the use of violence and the potential for 
biased documentation of such events. For the City of Chicago, the number of 
individuals arrested during each recorded event is considered as a separate variable 
to be modelled and predicted, which allows us to investigate the possibility of 
enforcement biases in subsequent perturbation analyses.

We also use data on socio-economic variables available at the portal 
corresponding to Chicago community areas and census tracts, including the 
percentage of population living in crowded housing, those residing below the 
poverty line, those unemployed at various age groups, per capita income and the 
urban hardship index49. Such data are also obtained from the City of Chicago data 
portal. Additionally, we use data on poverty estimates for the other cities, which are 
obtained from https://www.census.gov.

Spatial and temporal discretization and event quantization. Event logs are 
processed to obtain time series of relevant events, stratified by occurrence 
locations. This is accomplished by choosing a spatial discretization and focusing on 
one individual spatial tile at a time, which allows us to represent the event log as a 
collection of sequential event streams (Fig. 1c). Additionally, we discretize time and 
consider the sum total of events recorded within each time window.

The coarseness of these discretizations reflects a trade-off between 
computational complexity and event localization in space and time. Spatial 
and temporal discretizations are not chosen independently. A finer spatial 
discretization dictates a coarser temporal quantization, and vice versa to prevent 
long stretches with no events and long periods of contiguous event records, both of 
which wil reduce our ability to obtain reliable predictions. For the City of Chicago, 
we fix the temporal quantization to 1 day and choose a spatial quantization such 
that we have high empirical entropy rates for the time series obtained. This results 
in spatial tiles measuring 0.00276° × 0.0035° in latitude and longitude, respectively, 
which is approximately 1,000′ across, roughly corresponding to an area of under 
two by two city blocks. Thus, any two points within our spatial tile are at worst in 
neighbouring city blocks. We dropped from our analysis the tiles that have too low 
a crime rate (with <5% of days within the modelling window having any event 
recorded) to reduce the computational complexity, resulting in N = 2,205 spatial 
tiles in the City of Chicago. The temporal and spatial resolution are adjusted in a 
similar manner for the other cities (Table 1).

Thus, we end up with three different integer-valued time series at each spatial 
tile: (1) violent crime (v), (2) property crime (u) and (3) number of arrests (w) 
in the City of Chicago. For other cities, we have only the first two categories 
because information on arrests was not available. We ignore the magnitude of the 
observations and treat them as Boolean variables. Thus, our models simply predict 
the presence or absence of a particular type of event in a discrete spatial tile within 
a neighbouring city block and observation window, that is, within the temporal 
resolution chosen, which is 1 day except for Atlanta, where is it is chosen to be 
2 days (Table 1).

Inferring generators of spatio-temporal cross dependence. Let 
L = {ℓ1, · · · , ℓN} be the set of spatial tiles and E = {u, v, w} be the set of event 
categories as described in the last section. At location ℓ ∈ L for variable e ∈ E, 
at time t, we have (ℓ, e)t ∈ {0, 1}, with 1 indicating the presence of at least one 
event. The set of all such combined variables (space + event type) is denoted as 
S = L × E. Let T = {0, ⋯ , M − 1} denote the training period, consisting of M time 
steps. Because for any time t, (ℓ, e)t is a random variable, our goal here is to learn 
its dependence relationships with its own past and with other variables in S to 
accurately estimate its future distribution for t > T.

To infer the structure of our predictive model, we learn a finite-state 
probabilistic transducer18 (referred to as a crossed probabilistic finite state 
automata (XPFSA), a generalization of probabilistic finite-state automata models 
for stochastic processes17, see unpublished manuscript at http://arxiv.org/
abs/1406.6651) for each possible source–target pair s, r ∈ S. Given a sequence of 
events at the source, these inferred transducers estimate the distribution of events 
at target r for some future point in time. The ability to estimate such a non-trivial 
distribution indicates successful prediction. With too many uncontrollable factors 
influencing the outcomes, causality cannot be inferred from the data for the 
problem at hand. Here we characterize directional dependence as the source being 
able to predict events occurring at the target, better than the target can do by itself. 
This prediction-centred approach has been called Granger causal influence50, but 
while this has been criticized as a weak indicator of causality, it is directly tuned 
to the challenge of forecasting future events. Importantly, we do not assume that 
the underlying processes are independent and identically distributed, or that the 
model has any particular linear structure. Additionally, predictive dependencies are 
not restricted to be instantaneous. The source events might impact the target with 
a time delay, that is, a specific model between the source and target might predict 
events delayed by an a priori determined number of steps Δmax ≥ Δ ≥ 0 specific to 
the model. Here, we model the dependency structure for each integer-valued delay 
separately. Thus, for source s and target t, we can have Δmax + 1 transducers, each 
modelling dependencies for a specific delay in {0, Δmax}. The maximum number of 
steps in the time delay Δmax is chosen a priori on the basis of the problem at hand.

While these dependencies may differ for different delays, they need not be 
symmetric between source and target pairs. The complete set, comprising at 
most |S|2(∆max + 1) models, represents a predictive framework for asymmetric 
multi-scale spatio-temporal phenomena. Note that the number of possible models 
increases quickly. For example, for the City of Chicago, for Δmax = 60 with 2,205 
spatial tiles and three event categories, the number of inferred models is bounded 
above by 2.6 billion.

Our approach consists of inferring XPFSAs in two key steps (Fig. 1d and 
discussion in Supplementary Methods). First, we infer XPFSA models for all 
source–target pairs and all delays up to Δmax. In the second step, we learn a linear 
combination of these transducers to maximize the predictive performance. 
Denoting the observed event sequence in the time interval (∞, t] at source s as 
s−∞

t , the XPFSA Hs
r,k estimates the distribution of events for the target r at the 

time step t + k. This is accomplished by learning an equivalence relation on the 
historical event sequences observed at source s, such that equivalent histories 
induce an approximately identical future event distribution at target r at k steps 
in the future. Thus, for example, the XPFSA shown in Fig. 1d has four states, 
indicating that there are four such equivalence classes of observations that induce 
the distinct output probabilities shown from each state. Often, this estimate is 
imprecise due to the possibility of multi-scale and multi-source dependencies, that 
is, when the target r is predicted by multiple sources with different time delays. In 
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the second step, we employ a standard gradient boosting regressor for each target 
to optimize the linear combination of inferred transducers and learn the scalar 
weights ωs

r,k for the source s, target r and delay k. Detailed pseudocode for the 
inference algorithms is provided in Supplementary Methods.

To compare with a standard neural net architecture, these probabilistic 
transducers may be viewed as local non-linear activation functions. With neural 
networks, we repeatedly compute the affine combination of inputs and apply 
fixed non-linear activation to the combined input and finally optimize the 
affine combination weights via backpropagation, but here we first learn the local 
non-linear activations and then optimize the linear or affine combination of weak 
estimators. Optimizing the weights is a significantly simpler, local operation and 
may be done with any standard regressor. In contrast to recurrent neural networks, 
the role of hidden-layer neurons is partially accounted for by states of the XPFSA, 
which are a priori undetermined with respect to both their multiplicity and their 
transition connectivity structure.

Computational and model complexity. We assume the maximum time delay in 
prediction propagation to be 60 days for all cities, which for the City of Chicago 
results in at most 2,669,251,725 inferred models, of which 61,650,000 are useful 
with γ ≥ 0.01. The model inference in this case consumed approximately 200k 
core-hours on 28-core Intel Broadwell processors, when carried out with incidence 
data over the period from 1 January 2014 to 31 December 2016. The computational 
costs for other time periods and other cities are comparable and roughly scale 
with the square of the number of spatial tiles but linearly with the length of the 
time-quantized data streams considered as input to the inference algorithm.

Crime prediction metrics. For each spatial location, the inferred Granger 
network maps event histories to a raw risk score as a function of time. The higher 
this value, the higher the probability of an event of the target type occurring 
at that location within the specified time window. To make crisp predictions, 
however, we must choose a decision threshold for this raw score. Conceptually 
identical to the notion of type 1 and type 2 errors in classical statistical analyses, 
the choice of a threshold trades off false positives (type 1 error) for false 
negatives (type 2 error). Choosing a small threshold results in predicting a 
larger fraction of future events correctly, that is, a high true positive rate (TPR), 
while simultaneously suffering from a higher false positive rate (FPR), and vice 
versa. The receiver operating characteristic curve (ROC) is the plot of the FPR 
versus the TPR, as we vary this decision threshold. If our predictor is good, we 
will consistently achieve high TPR with small FPR, resulting in a large AUC. 
Importantly, the AUC measures the intrinsic performance, independent of the 
threshold choice. Thus, the AUC is immune to class imbalance (the fact that 
crimes are rare events). An AUC of 50% indicates that the predictor does no 
better than random, whereas an AUC of 100% implies that we can achieve perfect 
prediction of future events, with zero false positives.

To evaluate the AUC, we treat a positive prediction as correct if there is at least 
one event recorded in ±1 time steps in the target spatial tile.

We also evaluate the PAI and PEI achieved when using our framework. 
The PAI is defined as follows: Given a set of k predicted hotspot cells, the PAI 
is determined by computing the ratio of the proportion of crime captured in 
the hotspots relative to the proportional area of the city flagged as hotspots. 
Specifically, defining H to be the union of the hotspot cells (which does not need to 
be connected) and S the spatial region of interest (for example, Portland, Oregon), 
the PAI is defined as

PAI(H) =

N(H)|S|
|H|N(S)

, (1)

where N(H) is the number of events in H over the forecasting window and ∣H∣ is the 
size of the hotspot region H ⊆ S. Letting λ(H) = N(H)/∣H∣ be the estimated intensity 
of events in region H and λ = N(S)/|S| be the total intensity of events in the region 
of interest, the PAI becomes

PAI(H) =

λ(H)

λ
∝ λ(H), (2)

which is only a function of λ(H) since λ  is independent of H. Thus, PAI is 
interpreted as the average rate of crime in the predicted hotspots relative to the 
average crime rate in the city. The trends obtained for the PAI and PEI with our 
approach match those reported in literature (see figure 3 in ref. 16).

Predictability analysis. In the City of Chicago, we can predict events 
approximately 1 week in advance at a spatial resolution of ±1 city blocks and a 
temporal resolution of ±1 day with a false positive rate of less than 20% and a 
median true positive rate of 78%. The predictive performance in other cities is 
enumerated in Table 2. While not directly modelled in the frequency domain, we 
found that the event forecasts produce very similar signatures in the frequency 
domain (Extended Data Fig. 2), when compared over the first 150 days of each 
out-of-sample period (1 year). We also consider prediction periods of 7, 14,  
30, 60 and 100 days to evaluate the variation of the PAI and PEI for the cities 
considered (Fig. 5a).

Spatial neighbourhoods. The degree of directed predictive dependency between 
one variable (the source stream) on another (the target stream), also called the 
(Granger-)causal influence, is quantified by the coefficient of dependence (γ; 
Supplementary Methods). Identifying the source–target pairs for which the 
coefficient of dependency (or Granger causality) is high (Extended Data Fig. 
6), we note that there exists a sparse set of spatial tiles that exert nearly all of the 
directed dependency in the entire set of observed variables. Thus, observing these 
variables alone would enable us to make good event forecasts. These tiles span the 
expanse of the city, and a Voronoi decomposition based on the centres of these 
tiles in shown in Extended Data Fig. 6b. Such a decomposition demonstrates an 
algorithmic approach to choosing optimal neighbourhoods for urban analysis.

Perturbation analysis. We experimented with positive and negative perturbations 
to both violent and property crime rates ranging from 1% to 10% of the observed 
rates. The response to perturbing the crime rates was measured as the relative 
change from the nominal baseline in the estimated time average for the predicted 
event frequencies 1 week in the future, corresponding to violent and property 
crimes and the number of arrests.

The results of our perturbation experiments both shed light on the stability 
characteristics of crime in Chicago and further allowed us to look for evidence 
of biased police enforcement responses under stress. Under stress, well-off 
neighbourhoods tend to drain resources disproportionately from disadvantaged 
locales (Fig. 3). Economically well-off neighbourhoods in the bottom 25% of  
the hardship index are much more likely to see a near-proportional increase 
(~15%) in law enforcement response, measured by the number of predicted 
arrests on a 10% increase in crime rates (Fig. 3c,d, which shows how 
regions with increased enforcement response are concentrated in well-off 
neighbourhoods), while the rest of the city sees a drop in the predicted response 
of about twice the magnitude (>30%). Increased crimes causes enforcement 
resources to be drained from disadvantaged neighbourhoods to support their 
counterparts with better SES. We performed multivariable linear regression 
analysis to evaluate this question in another way. Here, we regressed the 
violent and property crime rates, independently, on the variables listed in Fig. 
3b, including a slope intercept variable in each model. In both models, the 
hardship index’s strong, negative coefficient for changes in the arrest rate from 
perturbations that increase the violent and property crime rates contradicts 
what might be expected in the absence of bias. Lower-SES neighbourhoods 
have more crime, and so these socio-economic indicators should contribute 
positively to the arrest rate with increasing crime. These patterns were replicated 
in our perturbation experiments for all the preceding years we analysed (2014–
2017; Extended Data Figs. 4 and 5). The response measured in the property 
and violent crimes, and associated arrests, from perturbations is detailed in 
Extended Data Fig. 3.

We also carried out similar perturbation analyses for the other cities, observing 
the expected increase of observed crime rates, with increasing poverty, but an 
unexpected decrease in violent and property crimes after a 5–10% simulated 
up-tick in either crime category (Fig. 4).

Naive baselines: autoregressive integrated moving average (ARIMA) models. 
To explore the predictive ability of naive baseline models on our datasets, we 
consider four ARIMA51 configurations with lag orders of p = 5 and 10, numbers of 
differencing of d = 1 and 2 and a window of moving average of q = 0. Let yt be the 
series we want to model and y′t be yt differenced d times, them the ARIMA(p, d, q) 
models the series y′t by

y′t = c + ϕ1y′t−1 + · · · + ϕpy′t−p + θ1εt−1 + · · · + θqεt−q + εt, (3)

where ϕ1, …, ϕp and θ1, …, θq are the coefficients to be fitted. In equation (3), the 
y′t−k are the historical values of y′t whose inclusion models the influence of past 
values on the current value (autoregression) while the εt−k are white noise terms 
whose inclusion models the dependence of the current value against current and 
previous (observed) white noise error terms or random shocks (moving average). 
Specifically, we use the following models:

y(1)t = c + ϕ1y′t−1 + · · · + ϕ5y′t−5, (4)

y(1)t = c + ϕ1y′t−1 + · · · + ϕ5y′t−10, (5)

y(2)t = c + ϕ1y′t−1 + · · · + ϕ5y′t−5, (6)

y(2)t = c + ϕ1y′t−1 + · · · + ϕ5y′t−10, (7)

where y(d)t  is yt different d times ( y(1)t = yt − yt−1 and y(2)t = yt − 2yt−1 + yt−2). 
For simple benchmarks, we apply the ARIMA model to each individual time series, 
which means that the predictive model is trained without exogenous variables. 
For the implementation, we use the Python statsmodels package52, and the result is 
shown in Extended Data Table 2. The inadequate performance of ARIMA may be 
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because (1) the use of a single datastream limits the ability of ARIMA to capture the 
interplay between co-evolving processes, and (2) a predetermined lag order fails to 
capture the possibly varying temporal memory of individual processes.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Crime incident data used in this study are in the public domain. The web links 
for the data sources for seven out of the eight cities considered here are: opendata.
atlantapd.org, data.austintexas.gov, data.detroitmi.gov, data.lacity.org, www.
opendata.philly.org, data.sfgov.org, and data.cityofchicago.org, and for Portland the 
data along with the leader-board data for the forecasting challenge were obtained 
from nij.ojp.gov.

Code availability
Software with source code is available at https://github.com/
zeroknowledgediscovery/Cynet, and the current version of the software may 
be referenced by https://doi.org/10.5281/zenodo.5730613. Any questions on 
implementation should be directed to the corresponding author.
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Extended Data Fig. 1 | out of Sample Predictive Performance over the Years. We show that the predictive performance is very stable, and variation in 
mean AUC is limited to the third place of decimal, at least when analyzing the last few years (4 years shown).
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Extended Data Fig. 2 | Comparison of Predicted vs actual Sample Paths in Time and Frequency Domains. Panels a, c and e show that the predicted 
and actual sample paths are pretty close for different years, when compared over the first 150 days of each year. Panels b, d and f show that the Fourier 
coefficients match up pretty well as well. More importantly, while our models do not explicitly incorporate any periodic elements that are being tuned, we 
still manage to capture the weekly, (approximately) biweekly and longer periodic regularities.
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Extended Data Fig. 3 | Perturbation Effects across Variables. We see that the decrease of violent crimes from increase of property crimes are localized 
in disadvantaged neighborhoods (panel g). Similarly, the decrease of property crimes from increase of violent crimes is also localized to disadvantaged 
neighborhoods (panel a), as well as the decreased violent crimes from increased arrests (panel k). We see a weaker localization for the corresponding 
increases in crime rates under similar perturbations. Looking at other pairs of variables under perturbation (rest of the panels), we generally do not see a 
very prominent correspondence with the distribution of socio-economic indicators. It seems crimes (and particularly violent crimes) are easier to dampen 
in locales with high existing crime rates, which is desirable result. But such conclusions are currently confounded by SES variables, and further work is 
needed to investigate these effects more thoroughly.
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Extended Data Fig. 4 | Stability of Suburban Bias over Years (Violent Crimes). We show that the nature of the perturbation response shown in Fig. 3 
holds true for earlier years as well: panels a and b correspond to year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which 
follow the same pattern shown in Fig. 3.
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Extended Data Fig. 5 | Stability of Suburban Bias over Years (Property Crimes). We show that the nature of the perturbation response shown in Fig. 3 
holds true for earlier years as well: panels a and b correspond to year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which 
follow the same pattern shown in Fig. 3.
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Extended Data Fig. 6 | automatic Neighborhood Decomposition Using Event Predictability. Using Event Predictability Computing a bi-clustering on the 
source-vs-target influence matrix (panel A) isolates a set of spatial tiles that are, on average, good predictors for all other tiles. Using this set, we use a 
Voronoi decomposition of the city (Panel B), which realizes an automatic spatial decomposition of the urban space, driven by event predictability.
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Extended Data Table 1 | Prediction Statistics for Portland. Prediction Statistics for the City of Portland, USa
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Extended Data Table 2 | Naive baseline results: mean aUC achieved with aRIma models. Naive baseline results: mean aUC 
achieved with aRIma models
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the data along with the leader board data for the forecasting challenge was obtained from nij.ojp.gov. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data was quantitative: incidence data for crime in major US cities. The study aimed to model, and predict the dynamics.

Research sample Eight major US cities

Sampling strategy All incidence data for urban crime available as spatio-temporal logs. No sampling was done. We used all data that was available from 

city of law enforcement agencies.

Data collection Data was obtained from public databases maintained by authorized agencies.

Timing For Chicago data from 2017 onwards was used. For other cities, we used data on the entire period over which it was made available 

for by authorized agencies. 

Data exclusions In Chicago we excluded criminal infractions that result from non-violent drug crimes.

Non-participation Not applicable

Randomization Not applicable

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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