
Event-level prediction of urban crime
reveals a signature of enforcement bias in
US cities

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41562-022-01372-0

1

Supplementary Information: Event-level
Prediction of Urban Crime Reveals Signature

of Enforcement Bias in U.S. Cities
Yi Huang1, Victor Rotaru1;3, Timmy Li1;3, James Evans2;4;6 and Ishanu Chattopadhyay,1;4;5F

1Department of Medicine, University of Chicago, Chicago, IL 60637, USA
2Department of Sociology, University of Chicago, Chicago, IL 60637, USA

3Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
4Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, University of Chicago,

Chicago, IL 60637, USA
5Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA

6Santa Fe Institute, Santa Fe NM 87501, USA

FTo whom correspondence should be addressed: e-mail: ishanu@uchicago.edu.

F

Portland (mean AUC: � 0:89)
0:5 0:95

AUC

Supplementary Figure 1. AUC distribution obtained for the City of Portland for the NIJ forecast challenge.

2

SUPPLEMENTARY METHODS

Algorithm Pseudocode

Algorithm 1: Granger Net
Data:

� a set of sequence fxi : i = 1; : : : ; Ng of length n;
� a hyperparameter 0 < " < 1;
� a model inference length n0 < n;
� a maximal delay �max;
� a threshold coefficient of causal dependence
0 for admissible models;

Result: A set of XPFSA models and a set of scalar weights for each target r 2 f1; : : : ; Ng.
/* Infer models */

1 Let Mr = ; be the set of admissible models for each target r 2 f1; : : : ; Ng;
2 for each delay � = 1; : : : ;�max do
3 for each source s = 1; : : : ; N and target r = 1; : : : ; N do
4 Let xin = (xs)

n0��
1 ;

5 Let xout = (xr)
n0
�+1;

6 Calculate PFSA G = GenESeSS (xin; ");
7 Calculate XPFSA Hs

r;� = xGenESeSS (xout; ");
8 Let
sr;� = coefCausalDependence(G;Hs

r;�);
9 if
sr;� �
0 then

10 Let Mr =Mr [
�
Hs

r;�

	
;

/* Learn scalar weights */
11 for each target r = 1; : : : ; N do
12 Let Ir =

�
(s;�) : there is a model Hs

r;� 2Mr

	
;

13 for each timestamp t = 1; : : : ; n� n0 do
14 Let xt be a vector with index set Ir;
15 for each pair (s;�) 2 Ir do
16 Let xin the length l sub-sequence of xs that ends in the (n0 + t��)-th entry;
17 Let the entry of xt[s;�] = predict

�
Hs

r;�; xin
�
;

18 Let yt = xr[n0 + t];
19 Let X the matrix with the t-th row being xt;
20 Let y be the vector with the t-th entry being yt;
21 Initialize a suitable regressor Reg;
22 Get scalar weights wr =

�
ws

r;�

�
(s;�)2Ir

= Reg (X;y);
23 return f(Mr;wr) : r = 1; : : : ; Ng;

3

Algorithm 2: GenESeSS
Data: A sequence x over alphabet �, 0 < " < 1
Result: State set Q, transition map �, and transition probability e�
/* Step One: Approximate "-synchronizing sequence */

1 Let L =
�
logj�j 1="

�
;

2 Calculate the derivative heap Dx
" equaling

�
�̂xy : y is a sub-sequence of x with jyj � L

	
;

3 Let C be the convex hull of Dx
" ;

4 Select x0 with �̂xx0 being a vertex of C and has the highest frequency in x;
/* Step Two: Identify transition structure */

5 Initialize Q = fq0g;
6 Associate to q0 the sequence identifier xid

q0 = x0 and the probability vector dq0 = �̂xx0 ;
7 Let eQ be the set of states that are just added and initialize it to be Q;
8 while eQ , ; do
9 Let Qnew = ; be the set of new states;

10 for (q; �) 2 eQ� � do
11 Let x = xid

q and d = �̂xx�;
12 if kd� dq0k1 < " for some q0 2 Q then
13 Let �(q; �) = q0;
14 else
15 Let Qnew = Qnew [fqnewg and Q = Q [fqnewg;
16 Associate to qnew the sequence identifier xid

qnew = x� and the probability vector dqnew = d;
17 Let �(q; �) = qnew;
18 Let eQ = Qnew;
19 Take a strongly connected subgraph of the labeled directed graph defined by Q and �, and denote the vertex set of

the subgraph again by Q;
/* Step Three: Identify transition probability */

20 Initialize counter N [q; �] for each pair (q; �) 2 Q� �;
21 Choose a random starting state q 2 Q;
22 for � 2 x do
23 Let N [q; �] = N [q; �] + 1;
24 Let q = � (q; �);
25 Let e� (q) =

q
(N [q; �])�2�

y
;

26 return Q, �, e�;

4

Algorithm 3: xGenESeSS
Data: A sequence xin over alphabet �in, a sequence xout over alphabet �out, and 0 < " < 1
Result: State set R, transition map �, and output probability �
/* Step One: Approximate "-synchronizing sequence */

1 Let L =
�
logj�inj

1="
�
;

2 Calculate cross derivative heap Dxin;xout
" equaling

�
�̂xin;xout
y : y is a sub-sequence of xin with jyj � L

	
;

3 Let C be the convex hull Dxin;xout
" ;

4 Select x0 with �̂xin;xout
x0 being a vertex of C and has the highest frequency in x;

/* Step Two: Identify transition structure */
5 Initialize R = fr0g;
6 Associate to r0 the sequence identifier xid

r0 = x0 and the probability vector � (r0) = �̂xin;xout
x0 ;

7 Let eR be the set of states that are just added and initialize it to be R;
8 while eR , ; do
9 Let Rnew = ; be the set of new states;

10 for (r; �) 2 eR� �in do
11 Let x = xid

r and d = �̂xin;xout
x� ;

12 if kd� � (r0)k1 < " for some r0 2 R then
13 Let �(r; �) = r0;
14 else
15 Let Rnew = Rnew [frnewg and R = R [frnewg;
16 Associate to rnew the sequence identifier xid

rnew = x� and the probability vector � (rnew) = d;
17 Let �(r; �) = rnew;
18 Let eR = Rnew;
19 Take a strongly connected subgraph of the labeled directed graph defined by R and �, and denote the vertex set of

the subgraph again by R;
/* Step Three: Identify output probability */

20 Initialize counter N [r; �] for each pair (r; �) 2 R� �out;
21 Choose a random starting state r 2 R;
22 for i 2 1; : : : ; jxinj do
23 Let �i be the i-th symbol in xin and �i be the i-th symbol in xout;
24 Let N [r; �i] = N [r; �i] + 1;
25 Let r = � (r; �i);
26 Let � (r) =

r
(N [r; �])�2�out

z
;

27 return R, �, �;

5

Theory of Probabilistic Automata

Granger Net is assembled from local models which are, in general, crossed probabilistic automata (XPFSA).

The construction of a Granger Net consists of two steps: 1) local model generation and network pruning and 2)
local model aggregation for comprehensive prediction. Event prediction is accomplished by aggregating these local
activations via a local regressor. No global optimization of these aggregation function is acrried out.

The model generation step of Granger Net is accomplished by the algorithms GenESeSS (See Algorithm 2) and
xGenESeSS (See Algorithm 3). xGenESeSS produces XPFSA models that captures how the history of a source
process influences the future of a target process. The Granger Net construction is described in Algorithm 1, and takes
as input a set fxs : s 2 Sg of length-n time series, hyperparameters " and n0 < n for local model inference, �max for
maximum time delay, and
0 for thresholding admissible models. For each target sequence xr, Granger Net outputs a
set of admissible models Mr with a scalar weight for each model in Mr via model inference and pruning (line 1-10)
and training of the aggregation weights (line 11-22).

Step 1: Model inference and pruning

The Granger Net framework models the influence from a source time series xs on a target time series xr at a particular
time delay � by an XPFSA Hs

r;� (line 7). Thus, we infer jSj�max XPFSA models for each xr which yields jSj2�max
models in total. Since the number of XPFSA models increases quadratically with the number of time series and strength
of the links may vary, pruning low-performing models early is important for parsimony. Granger Net rejects models by
thresholding on the coefficient of causal dependence
sr;� of model Hs

r;� (line 8), which measures the strength of
dependence of the output sequence on the input one. More specifically, we have

sr;� = 1�
uncertainty of the next output in xr with observation of xs

uncertainty of the next output in xr
(1)

 can be evaluated from the synchronous composition of the PFSA that models the input process (line 6) and the
XPFSA that models the causal influence. Granger Net retains the model Hs

r;� if and only if
sr;� is greater than a
pre-specified threshold
0. At the conclusion of Step 1, Granger Net returns an admissible set of models

Mr =
�
Hs
r;� :
sr;� >
0

	
(2)

for each r 2 S.

Step 2: Train linear weights

In this step, we integrate the local models in xr ’s admissible set for forecasting events in xr. To do this, Granger Net
trains a linear coefficient !sr;� for each Hs

r;� 2Mr (line 22) so that the final prediction for xr at time step h is equal toX
Hs

r;�
2Mr

!st;�H
s
r;�

�
(xs)

h��
�
; (3)

where (xs)
h�� is the truncation of xs at h��. To compute the coefficients, we solve a regression problem Reg(X;y)

(line 22) for each r 2 S with the predictor variables being predictions xt[s;�] obtained by running each sequence
(xs)

n0+t�� through Hs
r;� (line 17), and the outcome variable being xr[n0 + t], value of xr at time n0 + t (line 18).

Hence, the X matrix is the (n � n0) � jMrj matrix with the entry indexed by t; (s;�) given by xt[s;�] and y, the
(n � n0)-dimensional vector with the entry indexed by t given by xr[n0 + t]. We can solve for the linear weights with
any standard regressor.

Inference Algorithms

On line 6 and 7 of Algorithm 1, Granger Net calls subroutine xGenESeSS, which infers XPFSA as models of cross-
dependencies between processes. Here, we establish the correctness of GenESeSS.

The inference algorithm for PFSA is called GenESeSS for Generator Extraction Using Self-similar Semantics. The PFSA
model is based on the concept of the causal state. A dynamical system reaches the same causal state via distinct paths
if the futures are statistically indistinguishable. More precisely, each process over an alphabet � of size m gives rise
naturally to an m-ary tree with the nodes at level d being sequences of length d, and the edge from the node x to x�,
� 2 �, labeled by Pr(�jx) – the probability of observing � as the next output after x. By the definition of causal state, if
two subtrees are identical with respect to edge labels, then their roots are sequences that lead the system to the same
causal state. Identifying all the roots of identical subtrees induces a finite automaton structure whose unique strongly
connected component is the generating model of the process.

Definition 1 (Probabilistic Finite-State Automaton (PFSA)). A PFSA G is a quadruple (Q;�; �; e�), where Q is a finite
set, � is a finite alphabet, � : Q � � ! � is called the transition map, and e� : Q ! P�, where P� is the space of
probability distributions over �, is called the transition probability.

Step 2 of Algorithm 2 (line 5-19) is an implementation this subtree “stitching” approach under finiteness of input data.

6

Note that the criterion for “stitching” two subtrees with roots x and x0 is that their edge labels are identical for all depths,
which translates to p(yjx) = p(yjx0) for sequence y of all lengths. The criterion is not verifiable with finite data, and
hence GenESeSS identifies two subtrees if they agree on depth one. Defining symbolic derivative �x to be the vector
with the entry indexed by � given by p(�jx), GenESeSS identifies x and x0 if �x = �x0 . This approach works well under
the assumption that the target PFSA is in general position, meaning that different causal states have distinct symbolic
derivatives. In practice, GenESeSS uses empirical symbolic derivative defined below to approximate �x. Let x be an
input sequence of finite length, the empirical symbolic derivative �̂xy of a sub-sequence y of x is a probability vector
with the entry indexed by � given by

�̂xy(�) =
number of y� in x

number of y in x
(4)

GenESeSS identifies two sequences (line 12) if their empirical symbolic derivatives are within an "-neighborhood of
each other for certain " > 0.

For simplicity, we first illustrate how GenESeSS solves the transition structure of the target PFSA from a sample path x
generated from a process of Markov order k. Assuming the x0 produced by Step 1 (line 4) is �, the empty sequence,
GenESeSS starts by calculating �̂x�, i:e:, the empirical distribution on �, and records � as the identifier of the first state.
Then, GenESeSS appends � with each � 2 �, and calculates �̂x�. By the general position assumption and assuming x

is long enough, with high probability, no �̂x� is within an "-neighborhood of �̂x�0 for � , �0, and hence each � is recorded
as the identifier for a new state. In fact, GenESeSS will keep on appending symbols to identifiers of stored states and
adding new states until it reaches a sequence of length k+1. Assuming y = �1 � � ��k�k+1, since the process is of order
k, we have �y = �z for z = �2 � � ��k+1, and hence, with high probability, �̂xy and �̂xz can be within an "-neighborhood
of each other given long enough input x. In this case, GenESeSS identifies the state represented by y with that of z. In
fact, GenESeSS will identify all states represented by sequences of length k + 1 to some previously-stored states. And
since no new states can be found, GenESeSS exits the loop on line 8 after iteration k+1. Taking the strongly connected
component on line 19, GenESeSS gets the correct transition structure.

However, not all processes generated by PFSA have finite Markov order. For such cases, Step 2 of GenESeSS will
never exit in theory, since there exists no n 2 N such that every causal state is visited for sequences with length � n.
And if we implement an artificial exit criterion, the model inferred might be unnecessarily large, and have hard-to-model
approximations. We address this issue via the notion of synchronization – the ability to identify that we are localized or
synchronized to a particular state despite being uncertain of the initial state.

In Step 1 of Algorithm 2 (line 1-4), GenESeSS finds an almost synchronizing sequence, which allows GenESeSS to distill
a structure that is similar to that of the finite Markov order cases, and thus carry out the subtree “stitching” procedure
described before. A sequence x is synchronizing if all sequences that end with the suffix x terminates on the same
causal state. A process is synchronizable if it has a synchronizing sequence, and a PFSA is synchronizable if the
process it generates is synchronizable. The structure of the “graph” of a perfectly synchronizable PFSA is that of a
co-final automata1.

A sequence x is "-synchronizing 2 to the state q if the distribution }x on the state set Q induced by x satisfies
k}x � eqk1 < ", where eq is the base vector with 1 on the entry indexed by q and 0 elsewhere. The importance of "-
synchronizing sequence is twofold: 1) since �Tx = }Tx

e�, where e� is the jQj� j�j matrix with the row indexed by q given
by e�(q), a }x close to eq give rise to a �x close to e�(q). And 2) although sequences prefixed by an "-synchronizing
sequence to a state q may not remain "-synchronizing to state q, they are close to q on average.

To find an almost synchronizing sequence algorithmically2, GenESeSS first calculates the convex hull of symbolic
derivatives of subsequences of x up to length L (line 1-3), and then selects a sequence x0 whose symbolic derivative
is a vertex of the convex hull (line 4). Since the convex hull of

�
�x : x 2 �L

	
is a linear projection of the convex hull�

}G(x) : x 2 �L
	

via e�, we can expect sequence x with �x being a vertex of the convex hull of
�
�x : x 2 �L

	
to be

a good candidate for an almost synchronizing sequence.

The corresponding inference algorithm for XPFSA is called xGenESeSS, which takes as input two sequences xin, xout,
and a hyperparameter ", and outputs an XPFSA in a manner very similar to the inference algorithm of PFSA.

While a PFSA models how the past of a time series influences its own future, a XPFSA models how the past of an
input time series influences the future of an output time series. Hence, while in the SSC algorithm of PFSA, we identify
sequences if they lead to futures that are statistically indistinguishable, in the SSC algorithm of XPFSA, we identify
sequences if they lead to the same future distribution of the output.

Definition 2 (Crossed Probabilistic Finite-State Automaton (XPFSA)). A crossed probabilistic finite-state automaton
is specified by a quintuple (�in; R; �; �out; �), where �in is a finite input alphabet, R is a finite state set, � is a partial
function from R � �in to R called transition map, �out is a finite output alphabet, and � is a function from R to P�out

called output probability map, where P�out is the space of probability distributions over �out. In particular, �(r; �) is the
probability of generating � 2 �out from a state r 2 R.

Note that a XPFSA has no transition probabilities defined between states as a PFSA does. The XPFSA in the example

7

has a binary input alphabet and an output alphabet of size 3. The bar charts next to the 4 states of the XPFSA indicate
the output probability distributions. To generate a sample path, an XPFSA requires an input sequence over its input
alphabet.

Similar to the PFSA construction approach, here we compute the cross symbolic derivative, which is the ordered tuple
Pr(� jx), with � 2 �out and a sequence x over �in. We compute the empirical approximation of the cross symbolic
derivative from sequences xin and xout as:

�̂xin;xout
y (�) =

number of � in xout after y transpires in xin

number of sub-sequence y in xin
(5)

Thus, xGenESeSS is almost identical to GenESeSS except that, in Step 1, xGenESeSS finds an almost synchronizing
sequence based on cross symbolic derivatives, and in Step 2, identifies the transition structure based on the sim-
ilarity between cross symbolic derivatives. Arguments for establishing the effectiveness of GenESeSS carry over to
xGenESeSS with empirical symbolic derivative replaced by empirical cross symbolic derivative.

Software for the cynet implementation, with instructions for installation and quick-start examples, is available at
https://pypi.org/project/cynet/

REFERENCES

[1] Ito, M. & Duske, J. On cofinal and definite automata. Acta Cybernetica 6, 181–189 (1983).
[2] Chattopadhyay, I. & Lipson, H. Abductive learning of quantized stochastic processes with probabilistic finite

automata. Philos Trans A 371, 20110543 (2013).

https://pypi.org/project/cynet/

