
1

Sequence Likelihood Divergence For Fast Time
Series Comparison

Yi Huang, Victor Rotaru and Ishanu Chattopadhyay?

University of Chicago, Chicago, IL

Abstract—Comparing and contrasting subtle historical
patterns is central to time series analysis. Here we intro-
duce a new approach to quantify deviations in the under-
lying hidden stochastic generators of sequential discrete-
valued data streams. The proposed measure is universal
in the sense that we can compare data streams without
any feature engineering step, and without the need of any
hyper-parameters. Our core idea here is the generalization
of the Kullback-Leibler (KL) divergence, often used to
compare probability distributions, to a notion of divergence
between finite-valued ergodic stationary stochastic pro-
cesses. Using this notion of process divergence, we craft a
measure of deviation on finite sample paths which we call
the sequence likelihood divergence (SLD) which approxi-
mates a metric on the space of the underlying generators
within a well-defined class of discrete-valued stochastic
processes. We compare the performance of SLD against
the state of the art approaches, e:g:, dynamic time warping
(DTW) [1] with synthetic data, real-world applications with
electroencephalogram (EEG) data and in gait recognition,
and on diverse time-series classification problems from
the University of California, Riverside (UCR) time series
classification archive [2]. We demonstrate that the new
tool is at par or better in classification accuracy, while
being significantly faster in comparable implementations.
Released in the publicly domain, we are hopeful that SLD
will enhance the standard toolbox used in classification,
clustering and inference problems in time series analysis.

Index Terms—Universal Metric; Dynamic Time Warping;
Probabilistic Finite State Automata; Time Series Clustering

I. INTRODUCTION

EFFICIENTLY learning stochastic processes is key
to analyzing time-dependency in domains where

randomness cannot be ignored. For such learning to
occur, we need to define either a measure of deviation or,
more generally, a measure of similarity to compare time
series. Examples of such similarity measures from the lit-
erature include the classical lp distances and lp distances
with dimensionality reduction [3], the short time series
distance (STS) [4], which takes into account of irregularity
in sampling rates, the edit based distances [5] with

?Corresponding Author E-mail: ishanu@uchicago.edu

generalizations to continuous sequences [6], the dynamic
time warping (DTW) [1], which is used extensively in the
speech recognition community, and the data smashing al-
gorithm [7]. A challenge in th existing techniques is differ-
entiating complex stochastic processes with subtle vari-
ations in their generative parameters. When presented
with finite sample paths from non-trivial processes, a vast
majority of the state-of-the-art techniques often focus on
their point-wise distance, instead of intrinsic differences
in their (potentially hidden) generating processes. Thus,
finding subtle deviations in long-memory processes might
be difficult. Additionally, in the age of big data, computa-
tional cost is crucially important. Despite its impressive
performance, the computational speed of the fastest
contender (DTW) might still pose a bottleneck in big data
applications. SLD addresses both these limitations: it is
significantly faster, and demonstrably differentiates data
streams in challenge cases indistinguishable to the DTW
algorithm (See Section VI-D).

When presented with finite sample paths, SLD esti-
mates deviation between the underlying generators. Our
intuition follows from a basic result in information theory:
If we know the true distribution p of the random vari-
able, we could construct a code with average description
length h(p), where h(�) is the entropy of a distribution. If,
instead, we used the code for a distribution q, we would
need h(p) +DKL (p kq) bits on average to describe the
random variable. Thus, deviation in the distributions show
up as an additional contribution from the KL divergence
term [8], [9], [10]. This shows that the KL divergence
has a concrete meaning: it is the average number of
additional bits that a source must transmit to a receiver in
order to communicate a random variable with an altered
distribution. Now, if we can generalize the notion of KL
divergence to processes, then it might be possible to
quantify deviations in process dynamics via an increase
in the entropy rate by the corresponding divergence.

The generalization of KL divergence to independent
identically distributed (i.i.d.) processes is trivial. SLD
works by generalizing the idea beyond i.i.d. cases and to
a class of stationary and ergodic finite-valued processes.
The class of processes we consider are those generated
by Probabilistic Finite State Automaton (PFSA) [11], [12],

Manuscript Click here to access/download;Manuscript;ms.pdf

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/kais/download.aspx?id=324582&guid=6a569a1a-dd3e-4804-88dd-cbe6a3bb9ad7&scheme=1
https://www.editorialmanager.com/kais/download.aspx?id=324582&guid=6a569a1a-dd3e-4804-88dd-cbe6a3bb9ad7&scheme=1
https://www.editorialmanager.com/kais/viewRCResults.aspx?pdf=1&docID=12134&rev=0&fileID=324582&msid=73cf83e5-16be-4188-9132-1b3bc6000fd8

2

[7], [13]. PFSA are semantically succinct and can model
discrete-valued stochastic processes of any finite Markov
order and a subclass of processes of no finite Markov
order [14], and can approximate arbitrary Hidden Markov
Models [12] (HMM). Importantly, the data smashing al-
gorithm [7] is also a PFSA based approach designed to
measure similarity between hidden generators. However,
the algorithms are distinct (data smashing aims to “invert”
the hidden generators algorithmically), and SLD is vastly
more efficient.

The remaining of the paper is organized as follows. In
Sec. II, we motive the sequence likelihood divergence
approach with i.i.d. processes, and propose the SLD
measure. We introduce PFSA in Sec. III and the main
theoretical considerations for sequence likelihood diver-
gence are developed in Sec. IV. We discuss specifics of
implementation issues for SLD in Sec. V and compare
SLD with state of the art baselines for clustering and
classification tasks in Sec. VI. Finally, in Sec. VII, we
demonstrate real world applications.

II. MOTIVATING EXAMPLE

Continuing with the intuition above, consider se-
quences of length n generated by two processes P1 =

B(:5) and P2 = B(:8), where B(p) is the Bernoulli
process with parameter p [15]. Our objective is to es-
timate deviations in the binary sample paths generated
by these processes. If we treat the sequences as vector
of dimension n and use Eij to denote the expected
hamming distance between sequences generated by Pi

and Pj , we conclude E11 = E12 = E21 = :5n, which
implies that two sequences both generated by B(:5) are
not more alike or dislike than two sequences with one
generated by B(:5) and the other, B(:8). Let

h1 = h([:5; :5]); h2 = h([:8; :2]);

d12 = Dkl ([:5; :5] k [:8; :2]) ;

d21 = Dkl ([:8; :2] k [:5; :5]) ;

and L(x;B(p)) denote the log-likelihood of B(p) gener-
ating x. Defining random vector

vx = (L(x;B(:5)); L(x;B(:8))) ;

then, by law of large number [16], we have

lim
n!1

vx =

�
(h1; h1 + d12) if x is generated by B(:5);

(h2 + d21; h2) if x is generated by B(:8):

The two limit points are identical if and only if d12 = d21,
which implies P1 = P2, i:e:, the vectors vx and vy are
close if the two sample paths x; y are generated by similar
processes. While in this particular example the processes
might be differentiated from generating a different fraction
of 1s, we can construct distinct non-i.i.d. processes with

same frequency of 1s to make both Hamming distance
and such a frequency check fail. Thus, we define:

Definition 1 (Sequence Likelihood Divergence). The
SLD �G between two finite sample paths x; y is:

�G(x; y) =
X
G2G

jL(x;G)� L(y;G)j (1)

where G is a fixed finite set of processes which may or
may not include the generators for x; y, and L(x;G) is the
log-likelihood of x being generated by the model G 2 G.

We will show that such a calculation may be carried out
efficiently if our process models are PFSAs, and that a
random yet finite choice of the set G is acceptable, giving
us a metric almost surely with enough data.

III. BACKGROUND

Definition 2 (PFSA). A probabilistic finite-state automa-
ton G is a quadruple (Q;�; �; e�), where Q is a finite
set of states, � is a finite alphabet, � : Q � � ! Q

called transition map, and e� : Q � � ! [0; 1] specifies
observation probabilities, with 8q 2 Q;

P
�2� e�(q; �) = 1.

We use lower case Greeks (e.g. � or �) for symbols in
� and lower case Latins (e.g. x or y) to denote sequence
of symbols, with the empty sequence denoted by �. The
length of a sequence x is denoted by jxj. The set of
sequences of length d is denoted by �d.

The directed graph (not necessarily simple with possi-
ble loops and multi-edges) with vertices in Q and edges
specified by � is called the graph of the PFSA and, unless
stated otherwise, assumed to be strongly connected [17].

Definition 3 (Observation and Transition Matrices).
Given a PFSA (Q;�; �; e�), the observation matrix e�G is
the jQj � j�j matrix with the (q; �)-entry given by e�(q; �),
and the transition matrix �G is the jQj � jQj matrix with
the (q; q0)-entry, written as �(q; q0), given by

�(q; q0) =
X

�:�(q;�)=q0

e�(q; �): (2)

Both �G and e�G are stochastic, i.e. non-negative with
rows of sum 1. Since the graph of a PFSA is strongly
connected, there is a unique probability vector pG that
satisfies pT

G�G = pT
G [18], and is called the stationary

distribution of G.

Definition 4 (�-Expression). � and e� may be encoded
by a set of jQj � jQj matrices Γ = f��j� 2 �g, where

��
��
q;q0

=

� e�(q; �) if �(q; �) = q0;

0 if otherwise:
(3)

We extend the definition to �? by �x =
Qn

i=1 ��i for x =

�1 : : : �n with �� = I, where I is the identity matrix.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Definition 5 (Sequence-Induced Distributions). For a
PFSA G = (Q;�; �; e�), the distribution on Q induced
by a sequence x is given by pT

G(x) =
�
pT
G�x

�
, where

~v� = v= kvk1.

Definition 6 (Stochastic process generated by PFSA).
Let G = (Q;�; �; e�) be a PFSA, the �-valued stochastic
process fXtgt2� generated by G satisfies that X1 follows
the distribution pT

G
e�G and Xt+1 follows the distribution

pG (X1 � � �Xt)
T e�G for t 2 N.

We denote the probability an PFSA G producing a se-
quence x by pG(x). We can verify that pG(x) =

pT
G�x

1
.

IV. PROCESS KL DIVERGENCE MEASURES

Definition 7 (Entropy rate and Process KL divergence).
The entropy rate H(G) of a PFSA G is the entropy rate
of the process generated by G [19]. Similarly, the KL
divergence DKL (G kG

0) of a PFSA G0 from the PFSA
G is the KL divergence of the process generated by the
G0 from that of G [20]:

H(G) = � lim
d!1

1

d

X
x2�d

pG(x) log pG(x) (4)

DKL (G kG
0) = lim

d!1

1

d

X
x2�d

pG(x) log
pG(x)

pG0(x)
; (5)

whenever the limits exist.

Lemma 1. For any PFSA G;H, KL divergence satisfies:

DKL (G kH) = 0 (6)

DKL (G kH) = 0 iff G = H (7)

where we interpret equality of PFSA G;H as

8x 2 �?; pG(x) = pH(x)) G = H (8)

Proof: Follows from the standard argument for
non-negativity of KL divergence for probability distribu-
tions [19].

Definition 8 (Log-likelihood). The log-likelihood [19] of a
PFSA G generating x 2 �d is given by

L(x;G) = �
1

d
log pG(x):

Theorem 1 (Convergence of Log-likelihood). Let G and
H be two irreducible PFSA, and let x 2 �d be a sequence
generated by G. Then we have

L(x;H)! H(G) +DKL (G kH) ;

in probability as d!1.

Proof: By chain ruleX
x2�d

pG(x) log
pG(x)

pH(x)

=
X

x2�d�1

X
�2�

pG(x)p
T
G(x) e�G

���
�
log

pG(x)pG(x)
T e�G

���
�

pH(x)pH(x)T e�H

���
�

=
X

x2�d�1

pG(x) log
pG(x)

pH(x)

+
X

x2�d�1

pG(x)
X
�2�

pG(x)
T e�G

���
�
log

pG(x)
T e�G

���
�

pH(x)T e�H

���
�| {z }

Dd

:

By induction, we have DKL (G kH) = limd!1
1
d

Pd

i=1Di,
and hence by Cesàro summation theorem [21], we have

DKL (G kH) = lim
d!1

Dd:

Let x = �1�2:::�n be a sequence generated by G and
x[i�1] be the truncation of x at the (i� 1)-th symbols, we
have

�
1

n

nX
i=1

logpH

�
x[i�1]

�T e�H

���
�i

=
1

n

nX
i=1

log
pG

�
x[i�1]

�T e�G

���
�i

pH

�
x[i�1]

�T e�H

���
�i| {z }

Ax;n

�
1

n

nX
i=1

logpG

�
x[i�1]

�T e�G

���
�i| {z }

Bx;n

:

Because the process generated by G is ergodic, we have

lim
n!1

Ax;n = lim
d!1

Dd = DKL (G kH) :

and limn!1Bx;n = H(G).
Next, we denote the log-likelihood of PFSA H gen-

erating a sequence x of length d which is actually
generated by PFSA G as L

�
x

d
 � G;H

�
. We show that

the probability that sequences x; y generated by distinct
processes cannot be distinguished by a random set of
PFSA vanishes with enough data.

Theorem 2 (Approximate Metric). Let X and Y be two
distinct PFSA in the sense of Eq. (8), and x; y be of length
at least d generated respectively by X;Y . If G is a ran-
domly chosen set of k PFSA, then Pr(�G(x; y) = 0)! 0,
as d; k!1.

Proof: Because of Thm. 1, we start the proof by
showing a fact about entropy and KL divergence: Let

DX;Y (G) = jH(X) +Dkl (X kG)� (H(Y) +Dkl (Y kG))j ;

then either DX;Y (X) > 0 or DX;Y (Y) > 0. In fact, let us
assume on the contrary that

DX;Y (X) = jH(X)� (H(Y) +Dkl (Y kX))j = 0;

DX;Y (Y) = jH(X) +Dkl (X kY)� (H(Y))j = 0:

Since X and Y are not equivalent, we have

H(X)�H(Y) =Dkl (Y kX) > 0; and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

1 1:1 1:2

0:8

0:9

1

1:1

0:98 1 1:02 1:04

1:2

1:4

1:6

0:9 1 1:1 1:2
0:8

1

1:2

1:4

1 1:5

1

1:2

1:4

1:2 1:4 1:6
0:95

1

1:05

1:1

0:8 1 1:2 1:4 1:6
0:8

1

1:2

0:4 0:6 0:8 1 1:2

0:8

1

1:2

1:4

1 1:2 1:4

1:2

1:4

1:6

0:8 1 1:2 1:4

1

1:2

0:8 1 1:2
0:5

1

1:5

2

L(x; T1)

L
(x

;
T
2
)

Fig. 1: For each of two PFSA G1 and G2 over binary alphabet, we generate 100 sequences of length 100. Then we
generate random pairs of PFSA fT1; T2g with binary alphabet and with size of state set ranging from 2 to 5. SLD
between the sequences remain sufficiently positive for the examples, corroborating that a finite number of random
PFSA discriminates between sample paths of distinct processes with high probability (Theorem 2).

H(X)�H(Y) =�Dkl (X kY) < 0;

which is a contradiction.
Now, without loss of generality, let us assume that

DX;Y (X) = cX;Y > 0 and let

AX;Y = fG : DX;Y (G) � cX;Y =2g :

Since X 2 AX;Y , by continuity of entropy and KL diver-
gence, we have pX;Y = Pr (AX;Y) > 0.

Again by Thm. 1, we have���L�x d
 � X;G

�
� L

�
y

d
 � Y;G

����! DX;Y (G);

and hence, for G 2 AX;Y ,

Pr
�
L(x

d
 � X;G) = L(y

d
 � Y;G)

�
! 0

as d!1.
Let G be a set of k randomly chosen PFSA. From the

analysis above, we see that as long as G \AX;Y , ;, the
probability that G cannot distinquish sequences generate
by X and Y vanishes as sequence length approaches
infinity. However, since a randomly chosen set G of k
PFSA satisfies

Pr (G \ AX;Y , ;) = 1� (1� pX;Y)
k ! 1

as k!1, we conclude the proof.
We illustrate the claim in Theorem 1 in Fig. 1 with

a pair of randomly generated PFSA project sequences
generated by two distinct PFSA. With two fixed PFSA
G1 and G2 over the binary alphabet, we generate from
each model 100 sequences, each of length 100. Then, we
randomly choose two PFSAs G = fT1; T2g, and compute
SLD using Eq. (1), showing that the sequences remain
well-separated.

Algorithm 1: PFSA Log-likelihood
Data: A PFSA G = (Q;�; �; e�) and a sequence x

of length n.
Result: Log-likelihood of G generating x

1 Get the stationary distribution pG as the left
eigenvector of �G of eigenvalue 1;

2 Let p be the current distribution on states, and
initialize it with pG;

3 Let L be the log-likelihood of G generating x and
initialize it with 0;

4 for each symbol � in x do
5 Get the current distribution on symbols

� = pT
G
e�G;

6 Update L = L� log �(�);
7 Let pnew be the new distribution on states, and

initialize all its entries with 0;
8 for each state q 2 Q do
9 Let the next the state qnew = �(q; �);

10 Let pnew(qnew) = pnew(qnew) + p(q)e�(q; �);
11 Update p with pnew= kpnewk1;
12 Let L = L=n;
13 return L;

V. IMPLEMENTATION CONSIDERATIONS FOR SEQUENCE

LIKELIHOOD DIVERGENCE

The algorithm for evaluating the log-likelihood of a
PFSA generating a given sequence is given in Alg. 1.
It is immediate that the time complexity of log-likelihood
evaluation is O (d� jQj)+A with d is the input length and
jQj is the number of states in the PFSA being considered,
and A is the complexity of computing the stationary

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

eigenvector in step 1. We note that the complexity for
likelihood scoring of HMMs with the forward algorithm has
time complexity O

�
d� jQj2

�
, where Q is the number of

the hidden states [22]. Nothwithstanding asymptotic time
complexities, Alg. 1 is clearly significantly simpler to the
dynamic programmimg involved in the forward algorithm
of HMM likelihood scoring.

A. SLD with fixed base sets

For the performance and run time comparison on a
synthetic dataset in Sec. VI and applications in Sec. VII,
we use G composed the four simple PFSA in Fig. 2a-d.
While better results may be obtained by random set of
base models, using a fixed set yields sufficiently good
performance when compared with the state of art. In
contrast to using a fixed set of base models, we can also
infer good base models in a classification problem, by
selecting as the base models the class-specific PFSA
inferred from the training set. This approach is further
described in Sec. VI.

B. SLD with continuous data

Since PFSA model sequences on finite alphabet,
continuous-valued input should first be quantized to dis-
crete ones. The simplest approach of discretization is
to choose k � 1 cut-off points p1 < p2 < � � � < pk�1
and replace a value < p1 by 0, in [pi; pi+1) by i, and
� pk�1 by k. We call the set of cut-off points a partition.
In our implementation, we use the entropy maximization
principle to obtain bins in which data points are evenly
distributed. If there are clear trends in the data stream,
we carry out partitioning after detrending.

VI. PERFORMANCE COMPARISON WITH BASELINES

A. Performance and Run Time Comparison

We compare dynamic time warping (DTW) [23],
Smash [7], and SLD on a synthetic dataset of binaty time
series samples. All three algorithms are implemented in
C++ to eliminate slowdowns from compiled vs interpreted
software as much as possible (for DTW we use a publicly
available C++ implementation [24], [2] from the original
authors). While all three algorithms admit parallelization,
we use sequential implementations for a straightforward
run time comparison.

Our synthetic dataset comprises 200 random binary
classificiation problems, each consisting of two classes,
with each class represented by 25 binary sequences of
length 500. All sequences for a given class are sample
paths from a randomly generated hidden Markov model
with binary output.

For evaluating classification performance, we use sep-
artaion ratio defined as follows. Let D be the matrix

with Di;j being the distance between the i-th sequence
and j-th sequence and li be the class label of the i-th
sequence, we define the mean inter-class distance s(D)

and mean intra-class distance d(D) by

s(D) =

P
i;j �liljDi;jP
i;j �lilj

; d(D) =

P
i;j

�
1� �lilj

�
Di;jP

i;j

�
1� �lilj

� ;

respectively, where �ab = 1 if a = b and 0 if otherwise.
The separation ratio r(D) is defined to be d(D)=s(D).
For DTW, we use window sizes 5; 10; 20; 30; 40; 50, and
100, and for data smashing, we use the consider of 2

reruns because of its probabilistic nature. The average
run time of SLD is :042 second. We note that (See Fig. 2e)
that SLD achieves an average separation ratio that is
comparable to DTW of window size 30 but with half the
run time. Fig. 2f compares the DTW and SLD run times
as the input length is increased, which shows significant
advantage for the latter. Both data sets are included in
the supplementary material (synthetic.zip).

B. SLD Example with Inferred Base Set

To compare the performance of SLD with DTW with the
base set G = fGi : i = 1; : : : ; kg, where Gi is inferred
from class i, we use the FordA data set downloadable
from the UCR time series classification archive [25]. The
FordA is a binary classification problem with continuous-
valued sensor signals of length 500, which we detrend
and partition (at levels �:199174 and :198883) to get tri-
nary sequences. Since we have two classes, we infer two
base models, i:e:, jGj = 2, and the signals are mapped
by Alg. 1 into points in R2, which are plotted in the first
row of Fig. 2g. On the second row of Fig. 2g we show
the 2D embedding using multidimensional scaling (MDS)
of the distance matrix produced by DTW5. We normalize
the points in both case and show the decision bound-
aries of the embeddings produced by four classification
algorithms: k-nearest neighbors with k = 3, support vec-
tor machine, random forest, and multi-layer perceptron.
Clearly SLD achieves better class separationcompared
to DTW5. Note that inference of the two base models is
carried our using the algorithm GenESeSS [26].

C. SLD-based Classifier Implementation

We have implemented a general time-series classifier
(ClusteredHMMClassifier) applicable to both continuous
valued and categorical data, using SLD as the core
principle [27], which is publicly available at https://pypi.
org/project/timesmash/. ClusteredHMMClassifier (Alg. 2)
operates by first finding clusters within each training class
based on SLD distance, followed by the inference of a
PFSA model corresponding to each cluster in each class.
Classification is finally carried out using these inferred

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://pypi.org/project/timesmash/
https://pypi.org/project/timesmash/

6

Algorithm 2: ClusteredHMMClassifier
Data:
� Dataset

�
X train; X test

�
;

� Labels Ltrain = (l1; : : : ; ln);
� Optional quantization parameters;
� A set of basis PFSA G for SLD;
� A clustering algorithm clu;
� A classification algorithm clf.

Result: Predicted labels for X test.
1 Let quantization schemes
Q1; : : : ;Qm = Quantizer

�
X train; Ltrain

�
;

2 Let L be the set of unique labels;
3 for i = 1; : : : ;m do

/* Cluster and get subclass labels */

4 Let X train
i ; X test

i = Qi

�
X train; X test

�
;

5 for each l 2 L do
6 Let X train

i;l be the subset of X train
i with label l;

7 Let D = SLD
�
X train
i;l ;G

�
;

8 Let
�
X train
i;l;c : c = 1; : : : ; C

	
= clu(D);

9 for c = 1; : : : ; C do
10 Assign a new label lc to sequences in

X train
i;l;c ;

11 Let Lnew
i be the new labels;

/* Infer PFSA and featurize using PFSA
log-likelihood. */

12 Let L be the set of unique labels;
13 Let G = ; be the set of class PFSA;
14 for each l in L do
15 Let Xl = fxi : yi = lg;
16 Add PFSA Gl = genESeSS(Xl) to G;
17 Let F train = Log-likelihood

�
X train;G

�
(See

Alg. 1);
18 Let F test = Log-likelihood

�
X test;G

�
;

19 Let F train =
�
F train
1 ; : : : ; F train

m

�
;

20 Let F test =
�
F test
1 ; : : : ; F test

m

�
;

/* Classification with the featurization. */

21 Train clf with F train;
22 return prediction clf

�
F test

�
;

models as the base set. Instead of simply summing up
the log-likelihoods with respect to the base models as
shown in Eq. (1), ClusteredHMMClassifier uses the set
of log-likelihoods as a feature vector, and a standard
classifier from those available in the scikit-learn [28] pack-
age, e:g:, RandomForestClassifier, AdaBoostClassifier,
GradientBoostingClassifier, or SVC.

We compare the error rates (1-accuracy) of the DTW
baseline and ClusteredHMMClassifier on datasets from
the UCR time series classification archive [29] and
demonstrated result in Tab. I. We compare datasets with
at least 50 time series per class for the comparison since
the inference algorithm genESeSS needs a moderate

sample size to work optimally. On 26 out of the 44 of
the datasets, ClusteredHMMClassifier outperforms the
DTW baseline . For PFSA inference we use the algorithm
GenESeSS described in [26].

D. A Challenge Dataset Breaking DTW

To conclude this section we demonstrate a challenge
dataset for DTW. The dataset has two classes with
25 binary sequences in each class. The sequence are
generated by two PFSA that have the same transition
map as the one in Fig. 2a but with different transition
probabilities

e�1(q0) = (:6; :4) ; e�1(q1) = (:4; :6) ;

e�2(q0) = (:4; :6) ; e�2(q1) = (:3; :7) :

After the sequences are generated, we flip 20% of the
symbols independently at random, and get distance ma-
trices of DTW with window sizes 0; 2; 5; 10, and SLD with
inferred base set. This dataset is designed to be espe-
cially challenging for DTW with bigger window size. We
can see from Fig. 2h that the faint separation produced
by DTW with window sizes 0 and 2 disappeared com-
pletely from window size 5 and 10, while the performance
of SLD remains robust even with 20% added noise.
The dataset is included in the supplementary material
challenge.zip.

VII. APPLICATIONS WITH REAL-WORLD DATA

A. Dataset 1: Motor Movement Imagery Dataset

This dataset is an excerpt from PysioNet [30], contain-
ing 64-channel 160Hz EEG from participants performing
specific tasks with images, namely: 1) TM: A target
appears on either the left or the right side of the screen.
The participant opens and closes the corresponding fist
until the target disappears. Then the participant relaxes.
2) TI: The same as the first task, except the participant
imagines opening and closing the corresponding fist but
doesn’t really move. During each recording, an object
appears on the screen for 4 seconds and disappear for
4 seconds. A participant moves or imagines to move
their fists for 4 seconds, then relaxes for 4 seconds, and
the cycle repeats. Fig. 3a,b,e,f illustrates the raw EEG
recordings, colored to distinguish the relaxation periods
from the movement/imaginary movement periods.

For each participant, we select a dataset of 56 se-
quences for each task from two 2-minute EEG recordings,
and order the sequences as demonstrated by Tab. II. We
drop the first and last 4 seconds from each recording
since they tend to be noisy. The heatmaps of distance
matrices of two channels from two participants are shown
in Fig. 3cd and Fig. 3g-h. From Fig. 3c-d. Note that
participant S004 has different patterns in EEG between

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

TABLE I: Performance Comparison on UCR Datasets (Error Rates)

Dataset Baseline CH Dataset Baseline CH

GunPointOldVersusYoung 0:035 0:006 ScreenType 0:589 0:576

FreezerRegularTrain 0:093 0:020 SemgHandSubjectCh2 0:200 0:196

StarLightCurves 0:093 0:021 ProximalPhalanxOutlineCorrect 0:192 0:189

Wafer 0:004 0:002 EthanolLevel 0:718 0:714

FordA 0:309 0:151 GunPointAgeSpan 0:035 0:035

SmallKitchenAppliances 0:328 0:229 ChlorineConcentration 0:350 0:352

ProximalPhalanxOutlineAgeGroup 0:195 0:141 PhalangesOutlinesCorrect 0:239 0:254

FordB 0:380 0:283 ECG5000 0:075 0:080

MixedShapesRegularTrain 0:091 0:068 UWaveGestureLibraryZ 0:322 0:347

WormsTwoClass 0:377 0:286 MiddlePhalanxOutlineCorrect 0:234 0:268

SemgHandMovementCh2 0:362 0:278 ElectricDevices 0:381 0:489

MiddlePhalanxOutlineAgeGroup 0:429 0:357 Yoga 0:156 0:203

DistalPhalanxTW 0:367 0:309 UWaveGestureLibraryY 0:301 0:401

DistalPhalanxOutlineAgeGroup 0:230 0:194 UWaveGestureLibraryX 0:227 0:310

SemgHandGenderCh2 0:155 0:132 Strawberry 0:054 0:076

DistalPhalanxOutlineCorrect 0:275 0:239 Crop 0:288 0:443

Ham 0:400 0:352 LargeKitchenAppliances 0:205 0:352

Computers 0:300 0:276 PowerCons 0:067 0:128

RefrigerationDevices 0:536 0:501 MelbournePedestrian 0:152 0:292

ProximalPhalanxTW 0:244 0:229 HandOutlines 0:119 0:243

Earthquakes 0:273 0:259 UWaveGestureLibraryAll 0:034 0:299

MiddlePhalanxTW 0:487 0:468 GunPointMaleVersusFemale 0:003 0:029

TABLE II: The composition of the TM and TI datasets

seq. No. TM TI

0 to 13 rest, rec. 1 rest, rec. 1
14 to 27 rest, rec. 2 rest, rec. 2
28 to 34 left hand, rec. 1 imaginary left hand, rec. 1
35 to 41 left hand, rec. 2 imaginary left hand, rec. 2
42 to 48 right hand, rec. 1 imaginary right hand, rec. 1
49 to 55 right hand, rec. 2 imaginary right hand, rec. 2

relaxation and (imaginary) movement, both from the
wave form and from the heatmaps of the distance matri-
ces. The relaxation to movement difference is persistent
across recordings for this participant. in contrast, partici-
pant S001 does not have significant difference in the EEG
between rest and (imaginary) movement sections (See
Fig. 3gh). Instead, this participant seem to be in very
different brain states for the two recordings.

B. Dataset 2: User Identification from Walking Activity

We consider a dataset of accelerometer measure-
ments in x; y; z directions of human participants walk-
ing along a predefined trail in the wild (University of
California, Irvine machine learning repository [31]). The
challenge is to identify a participant from the inferred
pattern of motion. We select 10 sequences from each of
the 5 participants from the beginning of the walk. Each
sequence is of 500 time steps long (each time step is
about 0:03 second) and with 250 time steps overlapping
between the two consecutive sequences.

We consider multiple quantization schemes, and
demonstrate the distances for the best two schemes for x,

y, and z directions in Fig. 3i, 3j, and 3k, respectively. Note
that while the distance in the x direction between the first
two participants (sequences 0-9, and sequences 10-19)
is small, their difference in the z direction is significant.

VIII. CONCLUSION

In this paper, we introduce sequence likelihood diver-
gence as an efficiently computable measure of deviation
between time series data. We compare SLD against
state of the art algorithms demonstrating at par or better
performance, and significant improvement in runtime.
The recent explosion of data driven applications call for
faster, better tools to compare and contrast data, and we
hope that SLD offers a new addition to the toolbox of the
modern data science revolution.

REFERENCES

[1] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging
method for dynamic time warping, with applications to clustering,”
Pattern Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[2] A. M. Q. Z. J. Z. E. K. G. B. Thanawin Rakthanmanon, Bil-
son Campana and B. Westover, “Ucr suite for time series subse-
quence search,” https://www.cs.ucr.edu/�eamonn/UCRsuite.html,
(Accessed on 01/20/2021).

[3] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic represen-
tation of time series, with implications for streaming algorithms,”
in Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery. ACM, 2003, pp.
2–11.

[4] C. S. Möller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer,
“Fuzzy clustering of short time-series and unevenly distributed
sampling points,” in International Symposium on Intelligent Data
Analysis. Springer, 2003, pp. 330–340.

[5] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.cs.ucr.edu/~eamonn/UCRsuite.html

8

q0

q1

0(.3)

0(.7)

1(.7)

1(.3)

q00

q01

q11

q10

0(.3)

0(.2)

0(.7)

0(.8)

1(.7)

1(.8)

1(.3)

1(.2)

q0

q1 q2

0(.3)

0(.7)

0(.6)

1(.7)1(.3)

1(.4)

q0

q1

0(.3)

0(.7)

1(.7)

1(.3)

a. b.

c. d.
SLD S 5 10 20 30 40 50 100

1:2

1:5

1:8

2:1

2:4

se
pa

rt
ai

on
ra

tio

SLD S 5 10 20 30 40 50 100

1

2

3

4

ru
n

tim
e

(s
ec

on
d)

Separation ratio run timee.

200 600 1000 1400 1800

10
�1

10
0

10
1

sequence length

ru
n

tim
e

(s
ec

on
d)

DTW30 data smashing

SLD
f.

g.
SVM Neural Net

S
LD

w
ith

in
fe

rr
ed

ba
se

P
FS

A
D

TW

h. DTW0 DTW2 DTW5 DTW10
SLD with inferred

base PFSA

Fig. 2: Panel a-d: Four basis PFSA used for the algorithm comparison in Sec. VI and applications in Sec. VII. An
edge connecting state q to q0 is labeled as � (e�(q; �)) if �(q; �) = q0 (See Defn. 2). Panel e: performance and run
time comparisons of SLD, data smashing [7], and DTW on a synthetic symbolic dataset. We denote data smashing
by S and DTW by their window size. The average run time of of SLD is :042 second. Panel f: run time v.s. sequence
length comparison between DTW30 and SLD. Panel g: 2D embeddings produced by Alg. 1 and DTW5 on the FordA
dataset with decision boundaries of SVM and neural network. Panel h: Distance matrices produced by DTW with
window sizes 0; 2; 5; 10 and SLD with inferred basis PFSA on a dataset desigend especially challenging for DTW.

[6] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. ACM,
2005, pp. 491–502.

[7] I. Chattopadhyay and H. Lipson, “Data smashing: uncovering
lurking order in data,” Journal of The Royal Society Interface,
vol. 11, no. 101, p. 20140826, 2014.

[8] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[9] A. Rényi, “On the foundations of information theory,” Revue de
l’Institut International de Statistique, pp. 1–14, 1965.

[10] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3–55, 2001.

[11] J. P. Crutchfield, “The calculi of emergence: computation, dynam-
ics and induction,” Physica D: Nonlinear Phenomena, vol. 75, no.
1-3, pp. 11–54, 1994.

[12] P. Dupont, F. Denis, and Y. Esposito, “Links between probabilistic
automata and hidden markov models: probability distributions,
learning models and induction algorithms,” Pattern recognition,
vol. 38, no. 9, pp. 1349–1371, 2005.

[13] I. Chattopadhyay, “Causality networks,” arXiv preprint
arXiv:1406.6651, 2014.

[14] W. Ching and M. Ng, Markov Chains: Models, Algorithms and
Applications, ser. International Series in Operations Research &
Management Science. Springer US, 2006. [Online]. Available:
https://books.google.com/books?id=IjMLAFZKBzYC

[15] C. W. Helstrom, Probability and stochastic processes for engi-
neers. Macmillan Coll Division, 1991.

[16] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester,
A Modern Introduction to Probability and Statistics: Understanding
why and how. Springer Science & Business Media, 2005.

[17] J. Bondy and U. Murty, “Graph theory (2008),” Grad. Texts in Math,
2008.

[18] M. Vidyasagar, Hidden markov processes: Theory and applica-
tions to biology. Princeton University Press, 2014, vol. 44.

[19] T. M. Cover and J. A. Thomas, Elements of information theory.
John Wiley & Sons, 2012.

[20] M. Vidyasagar, “Bounds on the kullback-leibler divergence rate
between hidden markov models,” in 2007 46th IEEE Conference
on Decision and Control. IEEE, 2007, pp. 6160–6165.

[21] G. Hardy, “Divergent series, with a preface by je littlewood and a
note by ls bosanquet, reprint of the revised (1963) edition,” Éditions
Jacques Gabay, Sceaux, 1992.

[22] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, 1989.

[23] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[24] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. West-
over, Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining
trillions of time series subsequences under dynamic time warping,”
in Proceedings of the 18th ACM SIGKDD international conference

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://books.google.com/books?id=IjMLAFZKBzYC

9

−200
0

200

Participant S004 task TM
channel 25 Recording 1 and 2

0 2000 4000
−200

0
200

timestamp (1/160 second)

ca
lib

ra
te

d
vo

lta
ge

−200
0

200

Participant S004 task TI
channel 21 Recording 1 and 2

0 2000 4000
−200

0
200

timestamp (1/160 second)

ca
lib

ra
te

d
vo

lta
ge

a.

b.

c.

d.

−100
0

100

Participant S001 task TM
channel 41 Recording 1 and 2

0 2000 4000

−100
0

100

timestamp (1/160 second)

ca
lib

ra
te

d
vo

lta
ge

−100
0

100

Participant S001 task TI
channel 59 Recording 1 and 2

0 2000 4000
−100

0
100

timestamp (1/160 second)

ca
lib

ra
te

d
vo

lta
ge

e.

f.

g.

h.

i. j. k.

Fig. 3: Panel a-h: Multi-channel EEG recordings and distance matrices for two participants from the Motor Movement
Imagery Datasets (see Sec. VII-A). For each participant, the dataset contains two EEG recordings of two tasks,
alternating rest and movement (TM) and alternating rest and imaginary movement (TI). Rest sections are colored
gray while (imaginary) movement sections, black. From the arrangement of the sequences (see Tab. II), we can
see that SLD clearly distinguishes rest from (imaginary) movements for participant S004 while distinguishes two
recordings for participant S001. Panel i-j: Distance matrices of accelerometer measurements in the x, y, and z

directions from 5 users in the User Identification from Walking Activity Dataset (see Sec. VII-B). For each direction,
we collect 10 sequences of 500 time steps from 5 users and show distance matrices resulted from two quantizations
(see Sec. V). From the heatmap, we see that measurements from different directions can be combined in user
recognition. For example, although SLD doesn’t separate user 1 and 2 well in the x-direction, it picks enough
separation in the z-direction.

on Knowledge discovery and data mining, 2012, pp. 262–270.
[25]
[26] I. Chattopadhyay and H. Lipson, “Abductive learning of quantized

stochastic processes with probabilistic finite automata,” Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 371, no. 1984, p. 20110543, 2013.

[27] V. Rotaru, “Timesmash,” https://pypi.org/project/timesmash/
#description, 2020.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
[30] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.

Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, “Physiobank, physiotoolkit, and physionet: compo-
nents of a new research resource for complex physiologic signals,”

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[29] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu,
S. Gharghabi, C. A. Ratanamahatana, and E. Keogh, “The ucr time
series archive,” IEEE/CAA Journal of Automatica Sinica, vol. 6,
no. 6, pp. 1293–1305, 2019.
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[31] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://pypi.org/project/timesmash/#description
https://pypi.org/project/timesmash/#description
http://archive.ics.uci.edu/ml

