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Abstract. Deep learning (DL) techniques have broad applications in science,

especially in seeking to streamline the pathway to potential solutions and discoveries.

Frequently, however, DL models are trained on the results of simulation yet applied to

real experimental data. As such, any systematic differences between the simulated and

real data may degrade the model’s performance—an effect known as “domain shift.”

This work studies a toy model of the systematic differences between simulated and

real data. It presents a fully unsupervised, task-agnostic method to reduce differences

between two systematically different samples. The method is based on the recent

advances in unpaired image-to-image translation techniques and is validated on two sets

of samples of simulated Liquid Argon Time Projection Chamber (LArTPC) detector

events, created to illustrate common systematic differences between the simulated

and real data in a controlled way. LArTPC-based detectors represent the next-

generation particle detectors, producing unique high-resolution particle track data.

This work open-sources the generated LArTPC data set, called Simple Liquid-Argon

Track Samples (or SLATS), allowing researchers from diverse domains to study the

LArTPC-like data for the first time.
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1. Introduction

In recent decades, much has been revealed about the nature of neutrinos. However, some

key questions remain, including: What is the neutrino mass hierarchy? Do neutrinos

violate charge-parity symmetry, and, if so, by how much? What more can be learned

from observing neutrinos produced by future supernovae? Resolving these and other

neutrino-centric questions is the goal of the international flagship Deep Underground

Neutrino Experiment (DUNE) [1]. The massive DUNE detector modules will employ

Liquid Argon Time Projection Chamber (LArTPC) technology [2, 3, 4] to observe

neutrino-argon interactions occurring in the detector volume.

Neutrino interactions in the volume of a LArTPC detector produce energetic,

charged particles that leave tracks of ionization electrons. The ionized electrons are

made to drift toward the plane of electrodes (wires) aided by an external electric field.

Signals in the wires, induced by the drifting electrons, are detected, amplified, digitized,

and read out as data. The goal of the neutrino data analysis is to use the readout signals

to reconstruct the original particle tracks and make inferences about the neutrino that

produced them.

The LArTPC community has amassed a substantial set of algorithms for simulation

and reconstruction that are codified in various large software suites too numerous to list

exhaustively [5, 6, 7]. The bulk of this software consists of conventional algorithms,

heuristic functions, and other codes manually designed by experts. Here, we refer to

algorithms not based on Deep Neural Network (DNN) techniques as “conventional.”

Results from these suites have been well validated against real detector data, utilizing

methods and metrics also based on conventional algorithms. On that solid basis,

techniques based on deep neural networks (DNNs) are being applied. Their inclusion

along with conventional algorithms represents a clear paradigm shift for the LArTPC

community.

DNN techniques bring improvements in precision and provide replacement or

augmentation to the laborious manual development. These are attractive and welcome

changes, but DNN techniques also bring a substantial new problem that must be solved

before their results can be accepted. This problem begins with training a neural network

using samples from one domain, typically that of a physics and detector simulation,

and then applying the trained network to infer about samples from another domain,

typically that of a real detector. With labeled data, the discrepancy may be addressed by

transfer learning and domain adaptation approaches in machine learning [8, 9]. However,

annotating or assigning a ground truth, such as a particle’s energy, in LArTPC data is

a challenge in itself.

In this work, we propose a more general technique to reduce the differences between

the simulations and experiments. And the technique does not require labeled or

paired data. We call it unsupervised unpaired data translation across domains. At

its core, it requires a transformation of individual samples of a source domain “A”

(e.g. simulations) such that a transformed sample is indistinguishable from other samples
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in a target domain “B” (e.g. experiments). In the meantime, a transformed sample

should be highly correlated to its source. These two constraints – realism (to the

target domain) and consistency (to the source domain), are somewhat competing. Our

approach to translating between two domains is based on the UNet Vision-Transformer

Cycle-consistent Generative Adversarial Network (UVCGAN) [10] validated on open

benchmark photographic data sets in the machine learning community. UVCGAN is

specifically designed to satisfy both constraints with a combination of loss functions.

Our work has two major contributions to both the experimental physics community

and the machine learning community. First, we have prepared and released a large two-

domain data set of simple liquid-argon track samples (SLATS). The data set represents

a simplified variant of the type of data commonly used in the LArTPC community and

it may serve as a benchmark data set for unpaired image translation tasks in machine

learning. Due to the high-resolution nature of its 2D images, the SLATS data set

presents a different challenge compared to existing public data sets of photographic

images. The evaluation of transformed images can be done in a paired fashion, which is

not possible in most existing data sets. Second, we adapted the state-of-the-art image-

to-image translation model UVCGAN to work on SLATS.

The rest of the paper is structured as the following: in Section 2, we describe

the nature of LArTPC data, how the two domains differ, and how they are simulated

and pre-processed; in Section 3, we review the UVCGAN architecture and its training

procedures for the SLATS data set; in Section 4, we evaluate the quality of translated

images produced by UVCGAN and competing models in their immediate form and after

a standard LArTPC signal processing procedure is applied.

2. The two-domain SLATS dataset

The data set we release here covers two data domains. Each domain is populated

by a variant of a simulation of the LArTPC detector used in the ProtoDUNE-SP

experiment[11, 12]. The two domains differ in precisely one feature – the detector

response function. The details of this variance, the simulation in general, and the

idealizations chosen are described in Section 2.1. The steps used to pre-process the data

into a form that can be input to UVCGAN are described in Section 2.2.

2.1. LArTPC simulation

The Liquid Argon Time Projection Chamber (LArTPC) detectors enclose a volume

of liquid argon. As illustrated in Figure 1, energetic charged particles traversing the

volume will ionize electrons from nearby argon atoms. These electrons remain ionized

long enough to drift under the influence of an external uniform electric field to one side

of the detector. There, they drift through a series of planes of parallel wires uniformly

spaced and transverse to the drift direction. The planes are labeled as “U”, “V”, and

“Y” in Figure 1. Electrons will induce an electric current in nearby wires as they pass.
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Figure 1: Illustration from [13] of a three-wire plane LArTPC and its signal formation.

Each plane is oriented at an angle with respect to the others and thus represents one

tomographic view of the ionization electron distribution as a function of time and space.

The space here is in the wire’s pitch direction perpendicular to the wire’s direction

and the drift direction. This process explains the “time projection” part of the name

LArTPC.

To simulate the process described above, we need a long and complex chain of

simulations. Such a simulation chain provides neutrino flux models, interaction cross

sections, nuclear transport effects, production of ionization electrons, and finally, the

electron drift and the electric current response at the wire planes. Most LArTPC

experiments and prototypes today utilize components of the Wire-Cell toolkit[14, 15]

to simulate the last step. The toolkit is also responsible for simulating degradations

happening during the drift, the induction of electric current, and the amplification and

digitization of the signal.

Although a comprehensive simulation would provide us with the most realistic data,

at this stage of our study, we need a more idealized data set to allow us better control

and understanding of features a neural translator must learn. To construct the idealized

SLATS data set, we make the following simplifications to the simulation chain. First,

the steps prior to the Wire-Cell toolkit are replaced with a simple generator of idealized
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Figure 2: Field responses and waveforms. The ionization electron distribution

(Panel A) is convolved with two types of responses to produce the two domains we

translate between. 2D response (Panel B top) is used to produce domain “B” samples,

and Quasi-1D response (Panel B bottom), domain “A” samples. The electronics

response function and example of the final, digitized per-channel ADC waveforms (input

to the translation algorithm) are shown in Panel C.

particle tracks. The tracks are in the form of line sources of uniform ionization and

are distributed uniformly over the detector in time, space, and direction. Such tracks

approximately mimic those of minimum-ionizing particles, such as cosmic-ray muons,

which are abundant for all LArTPC detectors placed above ground. Second, inside the

Wire-Cell toolkit simulation, we omit all noise models to focus purely on signals from

ionization as described next.

The Wire-Cell toolkit applies the effects of electron diffusion[16, 17] and absorption

while transporting the ionization electrons through a uniform drift field in the bulk of

the detector volume. Near to the wire planes the ionization electrons are drifted through

a far more complex electric field governed by the locations and sizes of the sense wires.

This detailed drift field, as well as the associated Ramo weight fields[18] are provided

to the toolkit as input. Here we use fields calculated by the GARFIELD [19] software

package using a 2D model[20] of the detector electrode arrays. The two domains of the

SLATS data set are distinguished by the differing nature of their fields.

Shown in Figure 2B are the electric current responses in a wire due to a nearby

drifting electron in each of the two variant field models. We define samples in domain

“B” as being produced with the full 2D field response model shown at the top of

Figure 2B. On the other hand, samples from domain “A” are produced with a related but

different response shown at the bottom of Figure 2B. It is constructed by masking the

2D response so that all contributions from regions near neighboring wires are removed.

The term “quasi” is used to indicate that the response is actually still two-dimensional

in the remaining narrow region near the central wire.
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Figure 3: Pre-processing for the SLATS dataset. Panel A: An example full image

of the U plane from domain “B” (2D). The full image has dimension (channel, time) =

(800, 6000). The part bounded by the red box is the center crop of dimension (768, 5888).

The center crop is divided into 3×23 tiles of size (256, 256) shown as the gray grid. Panel

B1 and B2: A pair of tiles from domain “A” (quasi-1D) and “B” (2D), respectively. The

tile in B2 corresponds to the highlighted tile in Panel A. Panel C: The Distribution of

the number of nonzero pixels in the tiles.

After the electric current response discussed above, an electronics response and

digitization model (linear scaling and truncation to 12-bit integer) are applied. The final

output from the simulation is the Analog-to-Digital Converter (ADC) count illustrated

in Figure 2C and it serves as the input to a neural translator.

2.2. Data generation and pre-processing

For generating the SLATS data set, the simulation runs produced 10010 events, each

with 10 ideal line sources at the minimum-ionization energy equivalent for muons. Each

event results in a 2D ADC readout image for each wire plane. For this data release, we

will focus only on the “U” plane – the first plane the electrons encounter during their

drift. Since a detector has six active regions, each with a separate set of wire planes,

the runs produced a total of 60060 “U”-plane images. The image from the “U” plane

is 800 pixels high and 6000 pixels wide. The height of the image represents the readout

channels and the width represents the time steps.

From each full readout image of shape (800, 6000) (Figure 3A), we take a center

crop of shape (768, 5888). The shape of the center crop is chosen so it can be divided

into tiles of shape (256, 256) for being used as input to a neural translator. Figure 3A

shows an example of the center crop (red box) of a full “U”-plane image along with the
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tiles (gray grid).

In the conventional practice of analyzing LArTPC readout images, it is common

to apply similar crops for physical reasons such as removing activity from background

interactions originating outside the detector or providing a size more optimal for fast-

Fourier transforms. Nevertheless, future work will investigate how to avoid this loss of

information at the edge of the readout image.

In some instances, the randomness of placing the 10 ideal particles across the entire

detector leads to one or more of the six active regions containing no ionization electrons.

The resulting “empty” center crops of readout images are neglected, leaving us with

56, 253 non-empty center crops (93.7%). From these, 1000 crops are reserved for the

test and 55, 253, for training.

Similarly, the sparseness of activity leads to a majority of tiled patches being fully

or nearly empty. To reject these tiles we form the distribution of the number of nonzero

pixels in tiles from both domains as shown in Figure 3C. We chose a threshold of 200

pixels around the first local minimum of the distribution for domain “A”. And to keep

the tiles paired, we drop a pair if either domain “A” tile or its domain “B” counterpart

falls below the threshold. After the filtering, we have 1, 065, 870 tile pairs for training

and 18, 887 for testing.

Figure 3B1 and B2 show a pair of tiles from domain “A” and “B”. We can observe

two major differences between the domains. First, the domain “B” track exhibits long-

range induction effects in both the longitudinal (time, horizontal) and transverse spatial

(channel, vertical) axes while the “A” track shows variation only in the former. This

leads to domain “B” tracks exhibiting generally broader, less compact features than

domain “A”. In particular, larger “lobe” structures are seen at the end of domain “B”

tracks while domain “A” tracks end more abruptly. This can also lead to features in

domain “B” tiles that are not present in the corresponding tile from domain “A” as

shown in the small red lobe between the two tracks in Figure 3. Second, domain “B”

has a larger neighborhood where the ionization distribution can lead to interference

patterns of the bipolar response. This is seen in the red lobe above the bottom track in

the figure.

3. Deep generative models for unpaired image translation

The model, UVCGAN, we adapted for unpaired translation on the SLATS data

set is a CycleGAN-like model. We chose a CycleGAN-like model not only because

CycleGAN [21] is a simple model that demonstrated promising performance on

photographic data sets but also because it is a deterministic model. As we will

review in Section 3.4, many algorithms designed for unpaired image-to-image translation

introduce artificial randomness in image generation. Randomness is the source of

diversity and hence is indispensable in data synthesis. It is also helpful in boosting

diversity in photographic image translation tasks as there is not one correct translation

for an input. However, the application of artificial randomness needs to be carefully
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Figure 4: Summary of the CycleGAN [21] model. The CycleGAN consists of two

pairs of GANs, (GA→B,DB) and (GB→A,DA). The discriminators, DA and DB, try to

distinguish translations from real images while the generators (or translators), GA→B

and GB→A, try to produce realistic translations that are consistent with the source.

justified in scientific data translation. Specifically, for this study on the idealized SLATS

data set, we assume that the map between the two domains should be one-to-one in

nature, and hence a deterministic model is an appropriate choice.

In Section 3.1, we discuss the CycleGAN-like models. In Section 3.2, we detail the

innovative UVCGAN generator. The pre-training and training procedures of UVCGAN

are discussed in Section 3.3. And finally in Section 3.4, we review other DNN models

for unpaired image-to-image translation, and the benchmarking models we compare

UVCGAN to.

3.1. Cycle-consistency for preserving source information

A generative adversarial network (GAN) consists of two networks, a generator (G)

and a discriminator (D). The two networks are pitted in a minimax game that the

generator tries to synthesize data to fool the discriminator; whereas the discriminator

aims to discern the synthesized data from the real ones. GANs are used wildly in

data synthesis where they produce highly authentic images, soundtracks, text, etc. from

random input [22, 23, 24, 25, 26]. But there is a problem when applying GANs to

translation because the input is no longer random and the translation should not only

resemble those from the target domain but also carry information from the input. A

solution provided by CycleGAN-like model [21] for translating with GANs is to use two

GANs, one for each translation direction, as shown in Figure 4. With the pair of GANs,

CycleGAN-like models can form loops of translation so that the information loss during

the translation could be measured and consequently penalized to encourage consistency

to the source.

Denote the two domains by A and B and let (GA→B,DB) and (GB→A,DA) be

the two GANs. For domain A, the cycle-consistency loss equals ‖a− acyc‖ where

acyc = GB→A(GA→B(a)), and similarly for domain B. The heuristics behind the cycle-

consistency loss is as the following. Let a ∈ A be a source image, since the translation



Deep Learning Translation between LArTPC Detector Response Models 9

GA→B(a) is supposed to resemble those from domain B, it is in general unclear how to

compare the translation GA→B(a) to a directly. However, if we can recover a to some

extent from GA→B(a) by translating it back to A via GB→A (i.e. require GB→A(GA→B(a))

to be close to a), we can trust that GA→B(a) carries substantial information from a.

In addition to the cycle-consistency loss, for some translation tasks, we can also use

the identity loss to encourage the generator to retain features of the source which are

also present in the target domain. Concretely, for domain A, the identity loss equals∥∥a− aidt∥∥, where aidt = GB→A(a), and similarly for domain B.

3.2. UVCGAN: U-Net Vision-transformer CycleGAN
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Figure 5: UVCGAN Generator. The generator of the UVCGAN is a U-Net [27] with

a Vision Transformer (ViT) [28] bottleneck.
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Figure 6: Pixel-wise Vision Transformer. The main body of the ViT is a stack of

Transformer encoder blocks.

The model U-Net Vision-transformer CycleGAN (UVCGAN) improves upon the

CycleGAN model by introducing a vision-transformer block at the bottleneck of the U-
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Net generator. A U-Net consists of a series of convolutional layers capturing local short-

ranged patterns [28]. Activations at different scales are passed directly to the decoding

part via skip connections. Convolution layers are in general ineffective in modeling

long-range dependencies, which are common in scientific applications. On the contrary,

Transformer-based [29] architectures excel at capturing long-range dependencies but

may struggle with modeling local pixel patterns [28]. These observations motivated

the design of a hybrid generator architecture for UVCGAN that combined the best

of both worlds – a U-Net for handling short-range pixel patterns with a Transformer-

based bottleneck for modeling long-range dependencies. We describe the working of the

UVCGAN generator briefly below and list the exact corresponding parameter values

used for SLATS tiles in parentheses.

The pre-processing layer of the U-Net (Figure 5) maps a single-channel (12-bit

gray-scaled) SLATS tile to a tensor with the same spatial dimension and f (48) features

(or channels). Each successive downsampling layer (D4, . . . , D1) halves the width and

height of the input, while each of the last three basic blocks (Be
3, B

e
2, B

e
1) doubles the

features. The output from the encoding path of the U-Net is a tensor of dimension

(16, 16, 8f) and it serves as the input to the ViT. The pixel-wise ViT (Figure 6) first

flattens an image encoding along the spatial dimensions to form a sequence of tokens.

The sequence has length 16× 16, and each token is a vector of length di = 8f (384). It

then concatenates each token with its two-dimensional Fourier positional embedding [30]

of length dp (384) and linearly maps the result to a vector of length dt (384). The main

body of the pixel-wise ViT is a stack of n (12) Transformer encoder blocks [31], each of

which consists of a multi-head attention [29] with 6 heads and a feed-forward network

with dh = 4dt (1536) hidden units. To accelerate the Transformer convergence, rezero

regularization [32]) is used (a trainable scalar α) to modulate the magnitude of the main

path of the residual blocks. The output from the Transformer stack is linearly mapped

to have dimension di and reshaped back to a tensor of shape (16, 16, di). Finally, on

the decoding path of the UNet, the upsampling layers (U1, . . . , U4) double the width

and height while the basic blocks (Bd
1 , . . . , B

d
4 ) and the post-processing layer shrink the

feature dimension to form a translated tile.

3.3. UVCGAN pretraining and training procedures

3.3.1. Pretraining. Typically, image translation generators are randomly initialized.

The training procedure moves these generators from random states into the final

configurations, capable of domain translation. However, similar to the findings of

UVCGAN, we discovered that initializing the generators by pretraining them on a

simpler task provides an advantage over random initialization.

As a simpler task to pretrain the generators, we use an image inpainting task. For

this task, SLATS images are tiled into a grid of patches of size 32 × 32 pixels. Then,

each patch in the grid is randomly masked by zeros with a probability of 40%. The

generators are pretrained to recover the masked regions via `2 loss. This pretraining



Deep Learning Translation between LArTPC Detector Response Models 11

allows the generators to learn non-trivial dependencies between different parts of the

SLATS image, which may be helpful for the subsequent domain translation.

We pretrain both GA→B and GB→A for 16, 384, 000 iterations on the image inpainting

task configured similarly to [10]. We use a smaller learning rate of 6.25 × 10−6 since

SLATS data has a larger range compared to natural images.

However, we found that the pretrained generators fail to recover the full width

of the tracks, filling masked regions with skinnier tracks. We speculated this happens

because pixel values away from the track cores are very small compared to the cores.

Therefore, their proper reconstruction gives a very small benefit in terms of the `2 loss.

On the other hand, before the network learns to reconstruct these small-valued pixels

properly, it is going to make a lot of mistakes. These mistakes are costly in terms of the

`2 loss. The high cost of mistakes compared to the small benefit of proper reconstruction

creates some sort of potential barrier to learning the full width of the tracks.

To lower the learning barrier, we modify the `2 loss function. We reduce the penalty

for the network to incorrectly overwrite zeros by α. Let y be an image from either domain

“A” or “B” and let ŷ be the inpainting output, the reconstruction loss is defined as

follows:

Lreco (ŷ, y) =
α ·∑yi,j=0 ŷ

2
i,j +

∑
yi,j 6=0 (ŷi,j − yi,j)2

H ×W (1)

where H and W are the height and width of the image.

During the pertaining, we kept α at 0 for the first 819, 200 iterations, allowing the

network to freely overwrite the empty space without penalty. Then, we linearly annealed

α to 1 during the subsequent 2, 457, 600 iterations. When α = 1, the loss function in

Equation (1) reduces to the normal `2 and remains that way till the end of pretraining.

An ablation study showed the modified `2 loss sped up the learning of the reconstruction

of small-valued pixels. The generators trained with the modified `2 loss also achieved a

∼ 10% lower reconstruction error than generators trained with the normal `2.

3.3.2. Domain Translation Training. The translation on the SLATS data set was

trained for 200 epochs with 5000 randomly selected tiles per epoch (hence 1, 000, 000

iterations in total). We kept the learning rate constant for the first half of the

training and linearly annealed it to zero during the second half. We found out that

using slightly unequal initial learning rates for generators (10−5) and discriminators

(5× 10−5) improved the performance. We also performed a small-scale hyperparameter

optimization on coefficients of cycle-consistency loss, λa and λb, and the gradient penalty

parameters, λGP and γ. The results reported in the evaluation (Section 4) were produced

with the best model found in the optimization with λa = λb = 1, λGP = 1, and γ = 10.

Identity loss was also used for SLATS training with coefficients kept at half of those

for cycle consistency. See [10] for a more detailed discussion on loss coefficients and

gradient penalty.
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3.4. Alternative generative models for unpaired image translation

Many recent models for unpaired image-to-image translation have been developed based

on photographic image data sets. The models can be grouped with respect to how

translation is generated and how consistency is enforced. For example, according to

image generation, CycleGAN [21], ACL-GAN [33], U-GAT-IT [34], Council-GAN [35],

and UVCGAN [10] were GAN-based methods, CUT [36] adopted the contrastive

learning approach, LETIT [37] utilized the energy transport on the latent feature

space of the images, and EGSDE [38] and ILVR [39] were based on diffusion models.

According to consistency enforcement, CycleGAN, ACL-GAN, U-GAT-IT, UVCGAN,

CUT, and EGSDE imposed explicit consistency constraints via loss functions, while

other methods did so implicitly. Another key feature that concerns us specifically is

whether randomness is used in image generation. Among the aforementioned models,

CycleGAN, U-GAT-IT, UVCGAN, and CUT are deterministic models, while Council-

GAN, EGSDE, and ILVR inject randomness into the image generation process.

Given the limitation on time and computing power, we decided to benchmark the

performance of UVCGAN on three GAN-based algorithms: CycleGAN, ACL-GAN,

and U-GAT-IT. All three benchmarking algorithms explicitly enforce consistency and

two of them, CycleGAN and U-GAT-IT, are deterministic. In general, we didn’t

consider models injecting randomness into image generation, but we kept ACL-GAN

for benchmarking to demonstrate the adverse effect of randomness (see Section 4).

To make the algorithms designed for photographic images run on SLATS, we turned

off data normalization and augmentation, changed the input channel to one (SLATS

contains gray-scaled images while photographic images normally have three channels –

RGB), and removed the final tanh activation.

For each benchmarking model, we did a small-scaled hyperparameter (HP) tuning.

The results from the best performers can be found in Section 4 and more details on HP

tuning and full results with all HP settings can be found in Appendix A.

4. Evaluation

In this section, we evaluate the performance of UVCGAN and compare it with those

of three benchmarking neural translators. The paired SLATS data set allows us to

do a direct comparison of the translated image with the target image. In Section 4.1,

we evaluate the translation quality with pixel-level mean absolute error (`1) and mean

squared error (`2) and visualize common defects that appear in the images produced by

the benchmarking algorithms. In Section 4.2, we evaluate the translations after applying

a signal processing procedure.

4.1. Evaluating translation quality at pixel level

To evaluate the quality of the translation, we exploit the pairing between samples in

the source and target domain. We use `1 (mean absolute error) and `2 (mean squared
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Table 1: Translation performance comparison with `1 and `2 differences. The

differences are produced with the best performer of each benchmarking algorithm.

“A” to “B” “B” to “A”

algorithm `1 `2 `1 `2

ACL-GAN 0.083 0.566 0.039 0.121

CycleGAN 0.074 0.180 0.061 0.159

U-GAT-IT 0.078 1.187 0.073 1.161

UVCGAN 0.030 0.033 0.025 0.027
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Figure 7: Translation examples. Here we show two examples of translation from “A”

(quasi-1D) to “B” (2D). We mark defects appearing in the translations produced by the

benchmarking algorithms: H for rugged track edge; N for big error in the core of the

track where the signal is the strongest; � for missing blob-shaped track tip.

error) to judge the quality of the translation and summarize the best result of each

benchmarking algorithm and that of UVCGAN in Table 1. Full benchmarking results

for all hyper-parameter settings can be found in Table A1 of Appendix A.

We show two sample translations in Figure 7. The images are also generated
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Figure 8: Signal processing study. Panel A. Diagram of the signal processing study.

An image a from domain “A” is translated by a neural translation algorithm G to

an image G(a) that is supposed to resemble a’s counterpart b from domain “B”. In this

study, domain “A” is the ADC generated with the quasi-1D response, while domain “B”

is ADC generated with the 2D response (See Section 2.1). We apply signal processing

φ to a, G(a), and b so that the electrons can be reconstructed. We zoom in on two

areas exhibiting artifacts that result from signal processing and neural translation,

respectively. For the box on the left, we can see that the translation reproduced the

mismatch caused by applying signal processing derived from domain “A” to domain

“B”. For the box on the right, we can see that the translation introduced artifacts

to the signal processing output. Panel B. Comparison of `1 errors on ADC values.

Panel C. Comparison of `1 errors on electrons obtained with signal processing. For the

ADC values, the baseline `1 error equals ‖a− b‖1, and the translation `1 error equals

‖G(a)− b‖1. Those for the electrons are defined similarly. From B and C, we can

see that UVCGAN shows even more advantage over the benchmarking algorithms with

respect to the more sensitive measurements provided by signal processing.

with the best-performing parameters of each benchmarking algorithm. We point out

that there are several obvious defects appearing in the translations produced by the

benchmarking algorithms: rugged track edge, big error in the track center, and missing

track tip.
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4.2. Evaluation based-on downstream signal processing

In practice, the bipolar nature of LArTPC ADC waveforms obscures an accurate and

precise measurement of the underlying distribution of ionization electrons. In order

to reveal this distribution so that physically meaningful parameters about the original

particles can be reconstructed (e.g. their momentum and mass) a procedure generically

called signal processing is applied[20, 40]. In a nutshell, signal processing has two

stages: deconvolution and high-pass filtering. First, it performs a deconvolution of an

ADC readout image with a model of the same detector response used in the simulation

but averaged over each region near a wire. The bipolar nature of the response causes

the deconvolution to inevitably amplify low-frequency noise. To counter that, the

second stage applies an adaptive high-pass filter known as signal region-of-interest (ROI)

selection. Further details can be found in [20].

Due to the inevitable amplification of noise described above, signal processing is

designed to contend with realistic detector noise by the application of various filters.

The interplay of the input noise, the filters, and the thresholds to define ROI make the

signal processing very sensitive to the presence of noise, or the lack thereof. Therefore,

the simplifying assumption to neglect noise that we have made thwarts the application

of signal processing. Post-processing of the noise-free ADC waveforms is thus performed

in order to add a realistic noise component. To do this, we linearly scale ADC pixel

values to be consistent with the voltage levels originally produced by the amplifiers in

the electronics prior to digitization. We then add noise generated from a model that

has been previously developed to match observations of LArTPC detectors. Finally, we

rescale (re-digitize) the result back to ADC levels. The signal processing may then be

correctly applied.

An example of the results of the procedure is shown in Figure 8A. The difference

between the domains in the ADC data is broad and large. This is expected due to the

fact that the domain “B” response spreads ionization distribution information across

a larger region than does the domain “A” response. The result after signal processing

compacts this diffuse information. As the signal processing uses a response derived from

that used to simulate domain “A”, it produces an ideal solution when applied to that

same domain. When applied to domain “B”, a sub-optimal yet reasonably good result

is obtained. Spurious artifacts can be seen in the domain “B” result which is due to a

conflation of the response mismatch and the imperfect filtering of inescapable noise. To

see such an example, we zoom in to the areas of φ(a), φ(G(a)), and φ(b) as marked by

the boxes in φ(a). The fact that the artifact appears in both φ(G(a)) and φ(b) attests to

the realism of the translation. However, we can also observe an artifact from the zoom-

ins of the box on the right which appears in φ(G(a)) only. Such an artifact is a result

of the neural translation and indicates a need for further perfection of the algorithm.

In order to better benchmark the four algorithms, we form a sub-sample containing

100 tiles spanning a variety of track topologies and compare the `1 statistics on ADC

values and signal processing results in Figure 8B and C. For the ADC values, the baseline
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`1 error equals ‖a− b‖1, and the translation `1 error equals ‖G(a)− b‖1. Those for the

electrons are defined similarly. We demonstrate in Section 4.1 that UVCGAN produces

higher quality translations than the benchmarking algorithms with respect to ADC.

In Figure 8B and C, we can see that UVCGAN shows even more advantage over the

benchmarking algorithms with respect to the more sensitive signal processing results.

A visualized performance comparison on three examples can be found in Appendix B.

Conclusion

In this study, we demonstrated the potential of deep neural network-based algorithms

for unpaired translation between simulated and detector data from neutrino physics

facilities. To lay a solid foundation, we resorted to an idealized simulation to generate

paired datasets with two types of field responses: quasi-1D and 2D. This allows us

to validate our method using paired metrics such as pixel-wise `1 or `2. The dataset

generated with a more realistic 2D response serves as a proxy for real detector data. We

pre-processed the datasets to form input to neural translation algorithms and made the

original and derived datasets available for the use of the larger community. We proposed

a neural translator, UVCGAN, that is based on the CycleGAN framework. We compared

UVCGAN with other existing unpaired translation algorithms and demonstrated its

advantage on pixel-level accuracy. Finally, we applied signal processing to reconstruct

the particles from ADC readings and showed that UVCGAN exhibits even more

advantage with respect to this more sensitive measurement.

In future, in order to apply our method in real-world detector data, several problems

need to be addressed. First, because the two domains will be truly unpaired, how to

measure the quality of translated data is a challenge. While there are widely accepted

metrics on the realism for photographic data sets, such a metric is missing for scientific

data sets. Second, how to measure and ensure the translation does not alter the physics

meaning of the source is another difficulty. Hence, rigorous and physically meaningful

consistency criteria and measurements need to be developed with neural translators

designed and evaluated accordingly. Finally, how to strike a good balance between

realism to the target and consistency to the source needs to be explored.
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Appendix A. More evaluation of translation quality

We compared the performance of UVCGAN with three algorithms of similar training

time: ACL-GAN, CycleGAN, and U-GAT-IT. Since all benchmarking algorithms were

originally designed for photographic image translation, they use tanh at the final layer

to limit the pixel value within [−1, 1]. However, since SLATS data is integer-valued and

used directly as input without any pre-processing, we removed the final tanh activations

from all three algorithms.

For ACL-GAN, we used three hyper-parameter (HP) sets, one for each of the three

unpaired translation tasks studied in the paper. The three tasks are selfie-to-anime,

male-to-female, and eye-glasses removal. Since ACL-GAN does not train translations

in both directions jointly, we trained a total of six models, one for each translation

direction and parameter set. For each model, we trained with a batch size of 4 for

250000 iterations, which means a total of one million images are used for training.

ACL-GAN can generate a variable number of outputs each with a randomly generated

style. To compare directly with other algorithms, we generated one output for any input

and use 1 as the random seed.

For CycleGAN, we did a grid search on two key HP values: generator architecture

and the coefficient for the cycle consistency loss. We evaluated the ResNet generator

with 9 blocks and the U-Net generator with size 256 input. The cycle consistency was

evaluated at values 1, 5, and 10 (default). Since CycleGAN trains both translators

jointly, we trained in total six models, one for each generator and cycle consistency. For

each model, we trained on 5000 images (with batch size 4) for 200 epochs, which means

a total of one million images are used for training.

For U-GAT-IT, we tried three cycle consistency (λcyc) values of 1, 5, and 10

(default). And by following the default of U-GAT-IT, we kept the identity consistency

equal to the cycle consistency. Since U-GAT-IT also trains both translators jointly, we

trained in total three models. For each model, we trained with a batch size of 4 for

250000 iterations, which means a total of one million images are used for training.

We evaluate translation quality with respect to `1 and `2 on all the benchmarking

algorithms with different HP settings and listed the result in Table A1

Appendix B. More Signal Processing Results

In this section, we show additional signal processing results. In Figure B1, we compare

the signal processing result on three events and evaluate the performance using a

modified version of the percentage difference. For two scalars x, y ≥ 0, the modified

percentage difference (abbr. mpd) equals 100 · (y − x)/(x + y) if x + y > 0 and 0

otherwise. Note that, the score mpd thus defined has a symmetric range, (−100, 100).

We list the mean absolute modified percentage difference (mampd) of the baseline (signal

processed “A” v.s. signal processed “B”) as the header of the first column of Figure B1

and the mampds of the translations on the individual images. We can see that while all
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Table A1: Translation performance comparison. Benchmarking of the evaluated

algorithms trained on the LArTPC data sets in terms of `1 and `2 differences between

translated and target.

“A” to “B” “B” to “A”

algorithm HP variant `1 `2 `1 `2

ACL-GAN

anime HP 0.219 5.476 0.180 5.188

gender HP 0.079 0.727 0.065 0.330

glasses HP 0.083 0.566 0.039 0.121

CycleGAN

(ResNet, 1) 0.266 6.123 0.202 5.180

(ResNet, 5) 0.171 2.947 0.235 5.449

(ResNet, 10) 0.147 2.469 0.322 10.451

(UNet, 1) 0.089 0.177 0.056 0.114

(UNet, 5) 0.078 0.178 0.062 0.147

(UNet, 10) 0.074 0.180 0.061 0.159

U-GAT-IT

λcyc = 1 0.086 1.367 0.069 0.997

λcyc = 5 0.078 1.187 0.073 1.161

λcyc = 10 0.079 1.404 0.075 1.217

UVCGAN 0.030 0.033 0.025 0.027

neural translators bring some improvement with respect to mampd over the baseline,

translations produced by UVCGAN achieve the best performance.
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Figure B1: Signal processing results for three events with pixel-wise modified

percent difference. For each event, on the first column, we show the signal processing

results for a tile in domain “A” and its counterpart in domain “B”. In the remaining

four columns, we show the signal processing results of the translations produced by the

four algorithms (top) and pixel-wise modified percentage difference (bottom).
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