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Abstract

An unpaired image-to-image (I2I) translation technique
seeks to find a mapping between two domains of data in
a fully unsupervised manner. While the initial solutions to
the I2I problem were provided by the generative adversarial
neural networks (GANs), currently, diffusion models (DM)
hold the state-of-the-art status on the I2I translation bench-
marks in terms of FID. Yet, they suffer from some limita-
tions, such as not using data from the source domain during
the training, or maintaining consistency of the source and
translated images only via simple pixel-wise errors. This
work revisits the classic CycleGAN model and equips it
with recent advancements in model architectures and model
training procedures. The revised model is shown to signif-
icantly outperform other advanced GAN- and DM-based
competitors on a variety of benchmarks. In the case of
Male-to-Female translation of CelebA, the model achieves
over 40% improvement in FID score compared to the state-
of-the-art results. This work also demonstrates the ineffec-
tiveness of the pixel-wise I2I translation faithfulness met-
rics and suggests their revision. The code and trained mod-
els are available at https://github.com/LS4GAN/
uvcgan2.

1. Introduction

Image-to-image (I2I) translation models aim to find a
mapping between two domains of images. When paired ex-
amples of images from two domains are available, such a
mapping can be easily solved in a supervised manner. A
more interesting case of I2I problems is the unpaired I2I
translation, where examples of pairs are not available. The
ability to perform an unpaired I2I translation is highly ben-
eficial since obtaining paired datasets in the real world is
often impossible, difficult, or time-consuming [4].

The advancement of unpaired I2I largely benefits from
recent developments in deep generating models such as

(variational) Autoencoder [17, 26], generative adversar-
ial networks (GANs), generating flows [36, 11, 12, 25].
One of the early successful unpaired I2I models is Cycle-
GAN [49] that uses a cycle-consistency constraint, requir-
ing that a cyclic back-and-forth translation between two
domains results in the original image. Several succeeding
models inspired by CycleGAN, such as STARGAN [7, 8],
SEAN [50], U-GAT-IT [24], and CUT [34], are designed to
further enhance the quality and diversity of the generated
images. However, GAN-based I2I methods lag behind the
general developments in the GAN architecture and training
procedures [22, 39].

An alternative route to image generation is provided by
diffusion models [18]. With a recent spike of interest in such
models, several applications of DMs to unpaired I2I transla-
tion have been developed [6, 29, 45]. Despite being recent,
the DM-based EGSDE [45] approach has demonstrated su-
perior results on several benchmarks. However, the DM-
based solutions may perform a suboptimal translation, since
they do not use source images during the training [45]. Ad-
ditionally, the DM-based methods rely on pixel-wise L2

distances to maintain the consistency of the source and
translated images. Such a simple consistency measure is not
guaranteed to preserve any semantically meaningful fea-
tures and can restrict image transformations.

In the past, the approach of revisiting a classic neu-
ral architecture and improving it with a number of mod-
ern additions has led to large improvements in perfor-
mance [28, 22, 2]. Based on this observation, we revisit
one of the earliest GAN-based I2I models – the CycleGAN.
Unlike the DM-based models, CycleGAN’s training proce-
dure is able to effectively utilize images from the source
and target domains simultaneously. Moreover, CycleGAN
maintains an intrinsic consistency between the source and
translated images (via the cycle-consistency constraint), a
feature that cannot be achieved by simple pixel-wise consis-
tency measures. In addition, recently, UVCGAN [40] work
has shown that the CycleGAN performance can be signifi-
cantly improved by modernizing its architecture.

ar
X

iv
:2

30
3.

16
28

0v
1 

 [
cs

.C
V

] 
 2

8 
M

ar
 2

02
3

https://github.com/LS4GAN/uvcgan2
https://github.com/LS4GAN/uvcgan2


Motivated by UVCGAN’s success we would like to re-
think the classic CycleGAN architecture further. We take
UVCGAN as a starting point, and redesign its generator,
discriminator and training procedure to obtain a revised
model – UVCGANv2.

Our Contributions. This work makes several technical
improvements to the UVCGAN [40] architecture:
• We redesign the UVCGAN generator model and intro-

duce style modulation to its decoding branch. We pro-
pose a style generation mechanism via a learnable Trans-
former token.

• We propose a modular discriminator architecture made of
a traditional discriminator body and a special head, which
prevents the problem of mode collapse [15]. We augment
the discriminator with a cache of past discriminator en-
codings, allowing it to directly compare feature statistics
between distributions of target and translated images.

• Combined with better training strategies, we demonstrate
that the revised UVCGAN model is able to outperform
the most advanced competitors by a large margin.

• We highlight the inconsistencies of the current unpaired
I2I evaluation protocols and suggest a better faithful-
ness measure, based on deep image representations of
Inception-v3.

2. Related Works
Problems related to unpaired I2I translation have been

approached from multiple directions. There are two major
classes of solutions: GAN-based and diffusion-based.

GAN-based Methods. Multiple GAN-based methods
have been developed to tackle the problem of unpaired I2I
translation. One distinct group of GAN-based methods in-
volves methods that rely on cycle consistency, including
CycleGAN [49], DualGAN [42], U-GAT-IT [24], and the
recent UVCGAN [40]. This class of algorithms requires
two generator networks that translate images in opposite
directions. Its basis is a cycle-consistency constraint, re-
quiring that a cyclically translated image should match the
original. Cycle-consistent models can show remarkable
performance [40], but there are concerns that the cycle-
consistency condition might be too restrictive.

ACLGAN [46] attempts to relax the cycle-consistency
constraint and replace it with a weaker adversarial one.
Such relaxation allows the network to make larger changes
to the source image, potentially achieving better translation
quality. CouncilGAN [32] moves a step further and com-
pletely discards cycle consistency. Instead, it trains an en-
semble of generators performing translation in a single di-
rection, allowing for a larger diversity of generated images.

CUT [34] takes an alternative route and uses a con-
trastive loss to maximize the information between the
source and the translated images. This approach removes
the need to have multiple generators and allows CUT to

train faster. Using CUT as a basis, ITTR [48] improves
its performance by modifying the generator architecture. In
a similar fashion, LSeSim [47] designs a contrastive-based
loss function that guides the image translation without the
need for multiple generators.

Diffusion-based Methods. With the recent explosion
of interest in diffusion models (DMs) multiple works have
attempted to employ them for unpaired I2I translation. For
instance, ILVR [6] achieves an unpaired image translation
by modifying the standard Gaussian denoising process. It
relies on a DM trained only on the target domain but guides
it toward the source image during denoising.

SDEdit [29] introduces another viable approach for per-
forming image translation. Instead of modifying the diffu-
sion process itself, it simply changes the starting point of
diffusion. SDEdit uses a source image perturbed by Gaus-
sian noise as a seed image and runs the standard diffusion
process on top of it.

Finally, recent EGSDE [45] work makes an observation
that both ILVR and SDEdit are trained on the target domain
data. As such, they may perform a suboptimal translation.
EGSDE combines ILVR and SDEdit approaches and modi-
fies both the starting point of the denoising process and the
denoising process itself. To overcome the limitation of the
DM being trained only on the target domain, it introduces a
special energy function, pretrained on both domains. This
energy function guides the denoising process, allowing it to
achieve state-of-the-art results on several benchmarks.

3. Method

UVCGANv2 revisits the classic CycleGAN [49] archi-
tecture. UVCGANv2 inherits several advancements from
UVCGAN [40] such as a hybrid U-Net-ViT generator ar-
chitecture, self-supervised generator pre-training, and better
training strategies. This section describes several improve-
ments we make over UVCGAN, including the generator,
discriminator and the training procedure.

3.1. Review of the original UVCGAN

UVCGAN follows the CycleGAN framework [49, 24]
that interlaces two generator-discriminator pairs for un-
paired I2I translation (Figure 1). Denote the two domains
by A and B. Generator GA→B translates images in A to
resemble those from domain B. Discriminator DB distin-
guishes images in B from those translated from A. The
same goes for the other translation direction, GB→A and
DA. Using the notations defined in Figure 1, the discrimina-
tors are updated by backpropagating loss in distinguishing
real and translated (fake) images (called GAN loss):

Ldisc
A = EB`gan (DA (af) , 0) + EA`gan (DA(a), 1) , (1)

Ldisc
B = EA`gan (DB (bf) , 0) + EB`gan (DB(b), 1) (2)
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Figure 1. CycleGAN framework. The CycleGAN [49] consists of two pairs of GANs, (GA→B ,DB) and (GB→A,DA). The discrimina-
tors try to distinguish translations from real images, while the generators (or translators) seek to produce realistic translations that are also
consistent with the input. The consistency is enforced by the cycle-consistency loss and (optional) identity loss. Here, we use a to denote
an image from domain A, b as an image from domain B, (∗)f is a fake image (a translation), (∗)c notes a cyclic reconstruction, and (∗)i

represents an identity reconstruction (when identity losses are used, GA→B |B and GB→A|A are encouraged to be identity maps).

Figure 2. Droplet-like artifacts produced by the original UVC-
GAN.

where bf = GA→B(a), af = GB→A(b) (subscript f means
fake), 0 is the label for fake images, 1 is the label for real im-
ages, and `gan represents a classification loss function (L2,
cross-entropy, Wasserstein [1], etc.). The generators are up-
dated by backpropagating loss from multiple sources: GAN
loss for realistic translation, cycle-consistency loss and op-
tionally identity loss for within-domain translation. Using
domain A as an example, we have:

Lgan
A = EA`gan (DB (bf) , 1) , (3)

Lcyc
A = EA`reg (ac, a) , Lidt

A = EA`reg (ai, a) (4)

where ac = GB→A ◦ GA→B(a), ai = GB→A(a), and `reg is
any pixel-wise loss function (L1 or L2, etc.). The generator
loss is defined as a linear combination:

Lgen=
(
Lgan
A +Lgan

B

)
+λc(Lcyc

A +Lcyc
B

)
+λi(Lidt

A +Lidt
B

)
(5)

3.2. Source Driven Style Modulation

Upon carefully examining images generated by the ref-
erence UVCGAN implementation, we find the majority of
them exhibit the characteristic droplet-like artifacts (Fig-
ure 2). These droplet artifacts are similar to those reported
in StyleGANv2 [22]. We eliminate these artifacts by remov-
ing all instance normalization layers in the U-Net encoding
branch and replacing those in decoding branch with learned
style modulations.

Specifically, at the bottleneck of the generator, the image
is encoded as a sequence of tokens to be fed to the Trans-
former network. We augment this sequence with an addi-
tional learnable style token S. The state of the S token at
the output of the transformer serves as a latent image style.
For each convolutions layer of the U-Net’s decoding branch
we generate a specific style vector si from S, by trainable
linear transformations.

The style modulation [22] effectively scales weights
wi,j,x,y of the convolutional operator by the supplied style
vector si, yielding modulated weights:

w′i,j,x,y = si · wi,j,x,y (6)

where i, j refer to the input and output feature maps and x,
y enumerate the spatial dimensions. To preserve the mag-
nitude of the activations, the scaled weights w′i,j,x,y need to
be demodulated. The demodulation operation further renor-
malizes the convolution weights as follows:

w′′i,j,x,y =
w′i,j,x,y√∑

i,x,y

(
w′i,j,x,y

)2
+ ε

(7)

where ε is a small number to prevent numerical instability.
Our approach is different from the StyleGANv2, which

generates style vectors si for each convolutional operation
by performing different affine transformations on the com-
mon vector w. This vector is obtained from a random non-
learnable latent code by a multilayer perceptron network.
The way how our S is processed is similar to the [class]
token of the ViT [13], however their token are mainly used
for classification task.

3.3. Batch Statistics Aware Discriminator

In our experiments, the PatchGAN discriminator archi-
tecture, used in the original UVCGAN, frequently causes
a partial mode collapse [15]. To workaround this problem,
we apply a variation of the Minibatch discrimination tech-
nique [37, 21].

Motivated by the neural architectures of the contrastive
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Figure 3. UVCGANv2 Generator. The generator of UVCGANv2 is a U-Net (Panel A) with an extended vision transformer bottleneck
(eViT, Panel B). The eViT outputs a style token for the modulated convolution blocks [22] (Mi, i = 1, 2, 3, 4) in the decoding path of the
U-Net. Refer to [40] for details about the input layer, output layer, basic block Bi, downsampling block Di, and upsampling block Ui in
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Figure 4. UVCGANv2 Discriminator with a batch head. For
the batch statistics block, we can use either a standard batch nor-
malization layer or batch standard deviation [21].

methods [5] we design a composite discriminator made of
a main body and a batch head. The body of the composite
discriminator can be any common discriminator, but, for the
purposes of this work, we use PatchGAN without the last
layer.

The batch head is designed to equip the discrimina-
tor with a minibatch discrimination power and prevent the
mode collapse. It is made of a layer that captures batch
statistics, followed by two convolutional layers (Figure 4).
Such a modular discriminator architecture allows one to
easily swap different discriminator bodies, while still pre-
serving the minibatch discrimination power of the batch
head.

Batch Statistics Layers. Many neural layers can be used
to capture batch statistics. In this work, we test two types of
layers: batch standard deviation (BSD), introduced by Pro-
GAN [21], and a simple Batch Normalization (BN), which
has been found effective for preventing mode collapse in
representation learning [14].

Cache of Discriminator Features. For the minibatch
discrimination method to work, the model must be trained
with batch sizes greater than 1. However, in our exper-
iments, CycleGAN models achieve much better perfor-
mance (for the same time/compute budget) when trained
with a batch size of 1. To reconcile the batch size of 1 and
the minibatch discrimination technique, we maintain a his-
tory (cache) of past inputs to the batch head.

During training, the batch feature statistics are stored in
four separate caches: real images from domain a, real im-
ages from domain b, and fake images from both domains.
All the caches have a fixed size and follow the first-in-first-
out (FIFO) update policy.

The discriminator’s batch head receives a concatenation
(along the batch dimension) of the discriminator body out-
put for the current minibatch along with a history of the
past outputs from a cache (Figure 4). The usage of fea-
ture caches allows disentangling the size of the minibatch
from the size of the statistical sample of features provided
to the batch head. It also synergizes with the composite dis-
criminator architecture, allowing one to cache outputs of the
discriminator body, which are expensive to recompute.

3.4. Pixel-wise Consistency Loss

To improve the consistency of the generated and source
images, we experiment with the addition of an extra term
Lconsist to generator loss (5). This term captures the L1 dif-
ference between the downsized versions of the source and
translated images. For example, for images of domain A

Lconsist,A = EA`1 (F (GA→B(a)), F (a)) (8)

where F is a resizing operator down to 32× 32 pixels (low-
pass filter). We add this term to the generator loss (5) with
a magnitude λconsist for both domains.



3.5. Modern Training Techniques

UVCGAN and CycleGAN use outdated GAN training
techniques. Hence, we revamp the training procedure with
a few modern additions, which include adding exponen-
tial averaging of the generator weights [21], implement-
ing spectral normalization of the discriminator weights [31],
trying unequal learning rates for the generator and discrim-
inator [16], and replacing the generic gradient penalty (GP)
with an improved zero-centered GP version [39].

4. Experiments
4.1. Datasets

We study the performance of UVCGANv2 on two
groups of datasets. The formerly widely used CelebA [27]
and Anime [24] datasets and the modern, high-quality
CelebA-HQ [21] and AFHQ [8] datasets. More details
about these datasets can be found in Appendix A.

CelebA and Anime. The CelebA and Anime datasets
have been commonly used to benchmark GAN-based un-
paired I2I translation algorithms [40, 49, 32, 46, 24]. We
study UVCGANv2 performance on three tasks related to
the CelebA and Anime datasets: Male-to-Female trans-
lation on the CelebA dataset, Glasses Removal on the
CelebA dataset, and Selfie-to-Anime translation on the
Anime dataset. Because the CycleGAN setup learns trans-
lations in both directions simultaneously, we also get bench-
marks in the opposite directions (Female-to-Male, Glasses
Addition, and Anime-to-Selfie translations).

CelebA-HQ and AFHQ. To compare the performance
of the UVCGANv2 against more recent unpaired I2I trans-
lation algorithms, such as EGSDE [45], we also consider
the CelebA-HQ and AFHQ datasets. We investigate Male-
to-Female translation on CelebA-HQ and three translations:
Cat-to-Dog, Wild-to-Dog, and Wild-to-Cat on AFHQ.

Preprocessing. For a fair comparison with EGSDE [45],
we downsize the CelebA-HQ and AFHQ images to 256 ×
256 pixels. To avoid Fréchet inception distance (FID) eval-
uation inconsistencies associated with a difference in the in-
terpolation procedures between different frameworks [35],
we use the Pillow [9] image manipulation library to perform
the image resizing with Lanczos interpolation.

4.2. Training

When training our modified UVCGAN implementation,
we seek to closely follow the original procedure [40]. It
consists of two steps. First, pre-training of the generator in
a self-supervised way on a task of image inpainting. The
second step is the actual training of the unpaired I2I trans-
lation networks, starting from the pre-trained generators.

Generator Pre-training. For each dataset, the gen-
erators are pre-trained on image inpainting tasks. This
task is set up in a fashion similar to the Bidirectional

Encoder Representations from Transformers (BERT) pre-
training [10, 40]. For the inpainting task, input images of
size 256 × 256 pixels are tiled into a grid of patches at
32 × 32 pixels. Then, each patch is masked with a prob-
ability of 40%. The masking is performed by zeroing out
pixel values. The generator is tasked to recover the original
unmasked image from a masked one. More details about
this pre-training are available in Appendix B.

Translation Training. The unpaired image translation
training is performed for 1 million iterations with the help
of the Adam optimizer. Depending on the dataset, we use
various data augmentations. For the preprocessed datasets,
such as CelebA-HQ and AFHQ, only a random horizontal
flip is applied. For the Anime and CelebA datasets, we use
three augmentations: resize, followed by a random crop of
size 256 × 256, followed by a random horizontal flip. Re-
sizing for the Anime dataset is done from 256 × 256 up to
286×286. For the CelebA dataset, the resizing is done from
178× 218 to 256× 313.

Hyperparameter Tuning. For each translation, we per-
form a quick hyperparameter search, exploring the space
of the cycle-consistency magnitude λcycle, magnitude of the
zero-centered gradient penalty λGP, magnitude of the con-
sistency loss λconsist, learning rates of the generator and dis-
criminator, and the choice of the batch head (BN versus
BSD). We also explore turning the learning rate scheduler
on and off. Refer to Appendix B for more details about the
training procedure.

5. Results

5.1. Metrics

There are two dimensions along which the unpaired I2I
style transfer models can be evaluated: Faithfulness and Re-
alism. Faithfulness captures the degree of similarity be-
tween the source and its translated image at an individual
level. Realism attempts to estimate the overlap of the distri-
butions of the translated images and the ones in the target.

The quality of image translation, in terms of realism,
is commonly judged according to the FID [16] and kernel
inception distance (KID) [3] metrics. Both metrics mea-
sure the distance between the distributions of the latent
Inception-v3 [38] features extracted from samples of the
translated and target images. Smaller FID and KID values
indicate more realistic images.

Early GAN-based works (e.g., [49, 32, 46, 24]) do not
explicitly evaluate the faithfulness of the translation. To the
best of our knowledge, there is no widely accepted faith-
fulness metric available. Some works [45] try to employ
simple pixel-wise L2, peak-signal-to-noise ratio (PSNR), or
structural similarity index measure (SSIM) [41] scores to
capture the agreement between the source and translation.
Yet it is unclear how well these pixel-wise metrics relate to
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the perceived image faithfulness.

5.2. Evaluation Protocol

Evaluation protocols differ drastically between different
papers (see Appendix C). This makes the direct comparison
of the translation quality metrics extremely challenging. For
the fairness of comparisons with older works, we follow
different evaluation protocols, depending on the dataset.

CelebA and Anime. When evaluating the quality of
translation on the CelebA Male-to-Female, CelebA Glasses
Removal, and Anime datasets, we use the evaluation pro-
tocol of UVCGAN [40], which uniformized FID/KID eval-
uation across multiple datasets and models, allowing for a
simple FID/KID comparison. For the actual FID/KID eval-
uation, we rely on torch-fidelity [33], which pro-
vides a validated implementation of these metrics.

The actual evaluation protocol for CelebA and Anime
relies only on test splits to perform the FID/KID evaluation.

For the CelebA dataset, we use KID subset size of 1000. For
the Anime dataset, we use the KID subset size of 50. We
use unprocessed images of size 256× 256 when evaluating
on the Anime dataset. For the CelebA dataset, we apply a
simple pre-processing to both domains: resizing the smaller
side to 256 pixels, then taking a center crop of size 256 ×
256.

CelebA-HQ and AFHQ. EGSDE [45] has evaluated
multiple models on the CelebA-HQ and AFHQ datasets un-
der similar conditions. To compare our results to EGSDE,
we replicate its evaluation protocol for CelebA-HQ and
AFHQ. For the AFHQ dataset, we evaluate FID and KID
scores between the translated images of size 256× 256 and
the target images of size 512 × 512 from the validation
split. For the CelebA-HQ dataset, we evaluate the FID/KID
scores between the translated images of size 256 × 256
and the downsized target images of size 256 × 256 from
the train split. We perform the same channel standard-



ization as EGSDE with µ = (0.485, 0.456, 0.406) and
σ = (0.229, 0.224, 0.225). To ensure full consistency, we
use the reference evaluation code provided by EGSDE [44].
Appendix E provides results of an alternative evaluation
protocol, which is uniform across all the datasets.

5.3. Quantitative Results

CelebA and Anime. Table 1 shows a comparison of the
UVCGANv2 (trained without piwel-wise consistency loss)
performance against ACLGAN [46], CouncilGAN [32],
CycleGAN [49], U-GAT-IT [24], and UVCGAN [40]. The
performance of the competitor models is obtained from the
UVCGAN paper [40]. According to Table 1, UVCGANv2
outperforms all the competitor models in all translation di-
rections, except Anime-to-Selfie. The degree of improve-
ment ranges from about 5% in terms of FID on the Selfie-
to-Anime translation, to around 51% on the Male-to-Female
translation. Likewise, there is a significant improvement
in the KID scores from about 13% on Anime-to-Selfie to
79% on Male-to-Female. Such a degree of improvement
demonstrates the effectiveness of modern additions to the
traditional CycleGAN architecture. Figure 5 provides a few
translation samples. More samples can be found in Ap-
pendix E.

Table 1. FID and KID scores. Lower is better.
Selfie to Anime Anime to Selfie

FID KID (×100) FID KID (×100)

ACLGAN 99.3 3.22± 0.26 128.6 3.49± 0.33
CouncilGAN 91.9 2.74± 0.26 126.0 2.57± 0.32
CycleGAN 92.1 2.72± 0.29 127.5 2.52± 0.34
U-GAT-IT 95.8 2.74± 0.31 108.8 1.48± 0.34
UVCGAN 79.0 1.35± 0.20 122.8 2.33± 0.38

UVCGANv2 75.8 1.18± 0.28 113.8 1.26± 0.23

Male to Female Female to Male
FID KID (×100) FID KID (×100)

ACLGAN 9.4 0.58± 0.06 19.1 1.38± 0.09
CouncilGAN 10.4 0.74± 0.08 24.1 1.79± 0.10
CycleGAN 15.2 1.29± 0.11 22.2 1.74± 0.11
U-GAT-IT 24.1 2.20± 0.12 15.5 0.94± 0.07
UVCGAN 9.6 0.68± 0.07 13.9 0.91± 0.08

UVCGANv2 4.7 0.14± 0.02 7.6 0.24± 0.02

Remove Glasses Add Glasses
FID KID (×100) FID KID (×100)

ACLGAN 16.7 0.70± 0.06 20.1 1.35± 0.14
CouncilGAN 37.2 3.67± 0.22 19.5 1.33± 0.13
CycleGAN 24.2 1.87± 0.17 19.8 1.36± 0.12
U-GAT-IT 23.3 1.69± 0.14 19.0 1.08± 0.10
UVCGAN 14.4 0.68± 0.10 13.6 0.60± 0.08

UVCGANv2 10.6 0.27± 0.06 11.3 0.34± 0.07

CelebA-HQ and AFHQ. Table 2 compares the re-
sults of the UVCGANv2 evaluation against CUT [34],

Table 2. FID, PSNR, and SSIM scores.
Male to Female

FID↓ PSNR↑ SSIM↑
CUT 46.61 19.87 0.74
ILVR 46.12 18.59 0.510
SDEdit 49.43 20.03 0.572
EGSDE 41.93 20.35 0.574
EGSDE† 30.61 18.32 0.510

UVCGANv2 17.65 19.44 0.681
UVCGANv2-C 17.34 21.18 0.738

Cat to Dog
FID↓ PSNR↑ SSIM↑

CUT 76.21 17.48 0.601
ILVR 74.37 17.77 0.363
SDEdit 74.17 19.19 0.423
EGSDE 65.82 19.31 0.415
EGSDE† 51.04 17.17 0.361

UVCGANv2 44.76 15.55 0.562
UVCGANv2-C 52.48 18.30 0.638

Wild to Dog
FID↓ PSNR↑ SSIM↑

CUT 92.94 17.2 0.592
ILVR 75.33 16.85 0.287
SDEdit 68.51 17.98 0.343
EGSDE 59.75 18.14 0.343
EGSDE† 50.43 16.40 0.300

UVCGANv2 45.56 15.59 0.551
UVCGANv2-C 55.61 18.65 0.631

ILVR [6], SDEdit [29], and two versions of the
EGSDE [45]. In particular, this table compares two versions
of the UVCGANv2: UVCGANv2 and UVCGANv2-C.
UVCGANv2-C is a version that was trained with a pixel-
wise consistency loss and λconsist = 0.2. The performance
of the competitor models is extracted from EGSDE [45].

Table 2 shows that UVCGANv2 achieves the best trans-
lation quality, according to the FID scores, with improve-
ments ranging from 10% on Wild-to-Dog translation to 43%
on Male-to-Female translation. The addition of the con-
sistency loss allows the UVCGANv2-C model to improve
its pixel-wise PSNR and SSIM metrics, but at the expense
of the FID score on AFHQ translation. UVCGANv2 and
UVCGANv2-C achieve competitive SSIM scores but lose
in terms of the PSNR ratio to the other models. However,
as was pointed out before [43], pixel-wise measures PSNR
and SSIM are not good metrics to judge perceptual image
faithfulness. In the next subsection, we try to investigate
better perceptual faithfulness metrics.

Overall, the gains in SSIM and PNSR scores, provided
by the consistency loss to UVCGANv2-C, do not seem to
outweigh the associated FID losses. Figure 6 demonstrates
a few translation samples, with more samples available in
Appendix E.



Table 3. Measuring Faithfulness with L2. The pixel-wise L2 is labeled as
L2 and the L2 between the latent Inception-v3 features is labeled as I-L2.
More examples, like the two on the right, can be found in Appendix D.

Male to Female Cat to Dog Wild to Dog
L2 ↓ I-L2 ↓ L2 I-L2 L2 I-L2

EGSDE 42.04 14.13 47.22 16.73 54.34 15.20
EGSDE† 53.44 15.37 62.06 16.82 66.52 15.44

UVCGANv2 64.19 13.47 77.72 16.39 81.57 14.79
UVCGANv2-C 47.87 13.55 56.53 16.52 58.53 14.85

input EGSDE UVCGANv2

E
xa

m
pl

e
1

E
xa

m
pl

e
2

EGSDE
L2 : 47.8

I-L2: 10.2

UVCGANv2
L2 : 95.9

I-L2: 11.7

EGSDE
L2 : 45.1

I-L2: 17.0

UVCGANv2
L2 : 43.2

I-L2: 13.7

L2 Scores

5.4. Toward Better Faithfulness Measures

The pixel-wise image similarity measures (such as L2,
PSNR, and SSIM) have been shown [43] to be weakly cor-
related with human perception of similarity. However, they
are currently being used [45] as a faithfulness metric in the
area of the unpaired I2I translation.

Following the discussions of perceptual content similar-
ity measures [43, 19], we believe that a proper faithfulness
measure should be based on deep image representations.
Since the primary goal of this paper is to revisit the clas-
sic CycleGAN architecture, we are not going to perform an
in-depth investigation of possible faithfulness metrics. In-
stead, we will briefly consider the usage of the L2 distance
between the latent Inception-v3 [38] features as an alterna-
tive faithfulness measure.

In Appendix D, we present a large sample of images,
generated by EGSDE and UVCGANv2 models. It helps
to investigate how well the pixel-wise L2 measure is corre-
lated with a perception of image faithfulness. In this part
of the paper, we provide two representative samples that
demonstrate: 1. pixel-wise L2 faithfulness measure penal-
izes image changes that should be freely-modifiable during
the translation (e.g. hairstyle); 2. pixel-wise L2 faithfulness
measure fails to effectively penalize changes to features that
are expected to be preserved (e.g. background, facial struc-
ture, etc).

The first row of images, to the right of Table 3, provides
a typical sample of Male-to-Female translations, comparing
EGSDE and UVCGANv2 models. Both translation sam-
ples are in good agreement with the source image. How-
ever, the EGSDE translation has a pixel-wise L2 difference
of 48 to the source, while the UVCGANv2 one has twice
as high L2 = 96. The high L2 difference is caused by a
large amount of hair added by the UVCGANv2. Naturally,
one may expect the hairstyle to be a free parameter of the
Male-to-Female translation. Yet, the pixel-wise faithfulness
metrics will highly penalize its changes.

The second row of images, to the right of Table 3,
demonstrates another sample of Male-to-Female transla-
tion, where pixel-wise L2 are similar between EGSDE
(L2 = 45) and UVCGANv2 (L2 = 43). Yet, the im-

ages are rather different in structure. The one from UVC-
GANv2 preserves the details better: the image background,
the bone structure of the face, the shape of the ear, fore-
head, nose, and even smile. The Inception-v3 scores also
correlated with this observation, showing a preference for
the UVCGANv2 image (13.7 versus 17.0). These observa-
tions suggest that the Inception-v3-based distance measure
may be a better faithfulness metric than a simple pixel-wise
one. However, we defer the proper investigation for future
works. To conclude, we show the comparison of pixel-wise
and Inception-v3 L2 faithfulness metrics between EGSDE
and UVCGANv2 models in Table 3. This table shows that
the UVCGANv2 model provides better faithfulness in terms
of the Inception-v3 features, while EGSDE is more faithful
if measured in pixel-wise distances between the source and
translated images.

6. Conclusion

This work revisited the classic CycleGAN framework
and built upon the more recent UVCGAN model. We
demonstrated that source-driven style modulation and batch
statistics aware discriminator are effective techniques to im-
prove the model performance. Our UVCGANv2 was exten-
sively bench-marked on four datasets on nine translation di-
rections. Results show that our model can reach outstanding
performance in terms of FID scores. At the same time, we
note the absence of the proper faithfulness metric in the area
of unpaired I2I translation, and general inconsistency of the
evaluation procedures. We believe developing such a mea-
sure and uniformizing evaluation will be highly beneficial
for future unpaired I2I methods development.

Potential Negative Social Impact. Deep generative mod-
els have potential to be misused for creating fakes [30].
However, since our models were trained on public datasets,
fakes can be easily identified with modern tools [20]. Fur-
thermore, we open-source our code and models, allowing
researchers to develop countermeasures.

Acknowledgement. The LDRD Program at Brookhaven
National Laboratory, sponsored by DOE’s Office of Science
under Contract DE-SC0012704, supported this work.
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Wasserstein generative adversarial networks. In Interna-
tional conference on machine learning, pages 214–223.
PMLR, 2017. 3

[2] Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus
Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens,
and Barret Zoph. Revisiting resnets: Improved training and
scaling strategies. Advances in Neural Information Process-
ing Systems, 34:22614–22627, 2021. 1
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A. Datasets
In this section, we provide additional details about the

datasets used in the main paper.
CelebA [27]. The datasets for the Glasses Removal and

Male-to-Female tasks are derived from the original CelebA
dataset. For a fair comparison with older models [40], we
used the pre-processed versions of Glasses Removal and
Male-to-Female datasets provided by CouncilGAN [32].
The CelebA dataset is made of images of size 178 × 218
pixels. The train split of the Glasses Removal task con-
tains about 11K images with glasses and 152K without. The
Male-to-Female dataset has about 68K males and 95K fe-
males. The test parts of the Glasses Removal and Male-to-
Female datasets contain about 3K images with glasses and
37K images without glasses, and 16K males and 24K fe-
males respectively.

Anime-to-Selfie [24]. The training split of the Anime-
to-Selfie dataset contains 3400 Selfie images and 3400
Anime images. The test part contains just 100 samples
from each domain. All images of this dataset have a size
of 256× 256 pixels.

CelebA-HQ [21]. The CelebA-HQ dataset has around
10K images of males and about 18K images of females in
the train split. The test split contains 1000 male and 1000
female images. The size of a CelebA-HQ image is 1024 ×
1024 pixels.

AFHQ [8]. The AFHQ dataset has around 5.2K cat,
4.7K dog, and 4.7K wildlife images in the train split, and
500 images of each in the test split. The images of the
AFHQ dataset have a size of 512×512 pixels. There are two
versions of the AFHQ dataset provided by StarGANv2 [8].
We use version 1 to be consistent with previous models.

B. Training Details
In this section, we expand on the generator pre-training,

I2I translation training, HP optimization setup, the final
model configurations, and the ablation study of UVC-
GANv2.

Generator Pre-Training. The pre-training of the gen-
erators was performed in a BERT-like fashion [10] on an
image inpainting pretext task.

To construct the image inpainting task, input images of
size 256 × 256 pixels are tiled into a grid of patches of
32 × 32 pixels. Then, each patch is randomly masked with
a probability of 40%. The masking is performed by zero-
ing out pixel values. The generator is tasked to recover the
original unmasked image from a masked one.

For the pre-training, we use the AdamW optimizer
together with a cosine learning rate annealing (with
restarts). We set the initial learning rate to 5 × 10−3 ×
(batch size/512), and the weight decay factor to 0.05. The
scheduler completes 5 annealing cycles during the pre-

training.
We apply several data augmentations, such as random

rotation (±10 degree), random horizontal flip (p = 0.5),
and color jitter (±0.2 shift in brightness, contrast, satura-
tion, and hue).

We pre-train the generators for 500 epochs for CelebA-
HQ and AFHQ. Due to the small size of the Anime dataset,
we run the pre-training for 2500 epochs. On the contrary,
due to the large size of the CelebA dataset, we run the pre-
training for 500 epochs, but limit the number of samples per
epoch to 32, 768. All the pre-trainings are performed with a
batch size of 64.

Image Translation Training. We train the unpaired
I2I translation models by closely following the procedure
of UVCGAN [40]. We use the Adam optimizer without
weight decay. The training is performed for 1 million itera-
tions. We experiment with using either a constant learning
rate or applying a linear scheduler. If the linear scheduler
is used, then the learning rate is maintained constant for the
first 500K iterations, and then linearly annealed to zero dur-
ing the subsequent 500K iterations.

We keep the batch size equal to 1 during the training.
For consistency with ProGAN [21] we keep the sizes of
the image caches at 3. This size effectively provides the
batch head with 4 samples to estimate the batch statistics.
To stabilize the generator, we apply an exponential weight
averaging to the generator with a momentum of 0.9999.

Hyperparameter Exploration. When performing the
final training, we explored the following grid of hyperpa-
rameters:

• Magnitude of the cycle-consistency loss λcyc: {5, 10}.

• Magnitude of the zero-centered gradient penalty λGP :
{0.001, 0.01, 1}.

• Batch Head type: Batch Normalization (BN) vs Batch
Standard Deviation (BSD).

• Generator’s and Discriminator’s learning rates:

1. Equal learning rates of 1× 10−4.
2. Unequal learning rates, with the learning rate of

the discriminator of 1 × 10−4 and the learning
rate of the generator of 5× 10−5.

The hyperparameter explorations were performed while
keeping the magnitude of the consistency loss λconsist equal
to zero. The grid of hyperparameters above was suggested
by the previous rough HP exploration.

For the AFHQ Cat-to-Dog, Wild-to-Dog, and CelebA-
HQ Male-to-Female datasets, we have run a second hy-
perparameter exploration, studying the effect of the mag-
nitude of the consistency loss λconsist on the I2I perfor-
mance. We have tried the following values of λconsist:
{0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}.



B.1. Final Configurations

Table 4. Best Training Configurations.

Dataset lrgen λGP λcyc B. Head

Anime to Selfie 5× 10−5 0.01 10 BN
Male to Female 1× 10−4 0.01 10 BSD
Glasses Removal 5× 10−5 0.01 10 BSD
HQ Male to Female 1× 10−4 1.0 5 BSD
Cat to Dog 1× 10−4 1.0 5 BN
Wild to Dog 1× 10−4 1.0 5 BN
Cat to Wild 5× 10−5 1.0 5 BN

For all the translation tasks, UVCGANv2 achieves the
best performance when the learning rate scheduler is not
used. Table 4 summarizes the final hyperparameter config-
urations (generator’s learning rate, magnitudes of the gradi-
ent penalty and the cycle consistency loss, and the choice
of batch head) that provide the best performance per trans-
lation task.

Generally, the high-quality datasets (CelebA-HQ and
AFHQ) favor stronger values of the gradient penalty term
λGP = 1, compared to the lower-resolution datasets
(Anime-to-Selfie and CelebA), favoring λGP = 0.01. Other
patterns of hyperparameters can be observed in the table.
However, their impact on the model’s performance is rela-
tively small compared to λGP.

We should note, that due to the instability associated with
GANs training, some of the best values in Table 4 may be
due to random fluctuations.

B.2. Ablation Study

Table 5. Ablation Study of UVCGANv2 on CelebA. ”+” indi-
cates that an option is added to the final UVCGANv2 configura-
tion. ”−” indicates that an option is removed from UVCGANv2.

Male to Female Female to Male
FID KID (×100) FID KID (×100)

UVCGAN 9.6 0.68± 0.07 13.9 0.91± 0.08
UVCGANv2 4.7 0.14± 0.02 7.6 0.24± 0.02

(a) − Style 8.1 0.53± 0.07 11.1 0.64± 0.07
(b) − B. Head 5.5 0.21± 0.03 8.6 0.31± 0.03
(c) − SN 4.7 0.14± 0.02 7.7 0.25± 0.03
(d) + Sched 6.3 0.35± 0.05 9.5 0.47± 0.05
(e) − Avg. 9.8 0.71± 0.05 14.2 0.91± 0.07

Table 5 summarizes UVCGANv2 ablation results on the
Male-to-Female translation of CelebA. To produce this ta-
ble we start with the final UVCGANv2 configuration and
make one of following modifications separately: (a) disable
style modulation in the generator; (b) disable batch head of
the discriminator; (c) disable spectral normalization (SN);
(d) add linear schedule; (e) remove exponential averaging
of the generator weights.

According to Table 5, the generator modifications (a)
account for the majority of the performance improvement.
The removal of these modifications degrades the FID score
of the Male-to-Female translation from 4.7 to 8.1. Like-
wise, the discriminator modifications (b) provide a signif-
icant but relatively smaller improvement in the I2I perfor-
mance. The removal of the spectral normalization (c) de-
creases the model performance, but the effect is negligible.

Each of the items (d) and (e) of Table 5 may suggest that
either the scheduler or exponential averaging of the gen-
erator weights is detrimental to the model’s performance.
However, this is not the case, since the effects of (d) and
(e) are entangled and mutually balancing. Individual modi-
fications to (d) or (e) destroy the balance and produce large
changes in the model’s performance. These changes are not
indicative of the effects of the joint modifications.

C. Remarks on Metric Evaluation Consistency

Inconsistency of unpaired I2I evaluation procedures is a
widespread problem. For example, some works (e.g. [24])
roll out their own FID evaluation code [23] and report
the so-called ”mean” FID and KID scores, where “mean”
means a weighted average of the actual FID/KID scores
and various other metrics. Some other works [35] choose
different image resizing algorithms, creating a noticeable
discrepancy in the reported FID scores.

Another source of FID/KID score inconsistency is the
difference in the evaluation protocols. For instance, works
like [40] prefer to evaluate FID scores only on images of the
test split, yet others [8] evaluate FID scores between trans-
lated test images and target images of the train split. Like-
wise, there is a difference in whether any pre-processing
is used in the FID/KID evaluation. For example, one can
evaluate FID scores between translated images with the pre-
processing and target images without pre-processing [34],
or one can apply the pre-processing step to both translated
and target images [45]. Moreover, the pre-processing pro-
cedures may differ between different works.

To uniformize FID/KID evaluation procedures, we pro-
pose a consistent evaluation protocol in Appendix E.

D. Metrics of Faithfulness to the Source

In this section, we provide more examples to illustrate
that I-L2 (defined as the L2 distance between the latent
Inception-v3 features) may be a more appropriate measure-
ment of faithfulness to the source than pixel-level L2. In
Table 6, we select translations according to two types of
criteria. Denote a translation produced by EGSDE asE and
that by UVCGANv2 as U .

Type 1: I-L2(E) ≈ I-L2(U) and L2(U)− L2(E) > 15.
Type 2: I-L2(E)− I-L2(U) > 3.



Table 6. Comparing EGSDE and UVCGANv2 translations with L2 and I-L2 scores.

L2 = 35.7
I-L2 = 12.6

PIF = 7

L2 = 70.5
I-L2 = 10.9

PIF = 1, 2,
3, 4

L2 = 37.6
I-L2 = 13.2

PIF =

L2 = 54.3
I-L2 = 11.1

PIF = 2, 3,
4

L2 = 39.9
I-L2 = 10.6

PIF = 7

L2 = 64.7
I-L2 = 10.8

PIF = 2, 3

L2 = 41.7
I-L2 = 13.3

PIF =

L2 = 71.2
I-L2 = 10.5

PIF = 2, 3,
4

L2 = 47.8
I-L2 = 10.2

PIF = 7, 8

L2 = 95.9
I-L2 = 11.7

PIF = 3, 4,
5, 6

L2 = 41.0
I-L2 = 11.9

PIF =

L2 = 59.6
I-L2 = 11.5

PIF = 1, 2,
4, 6

L2 = 46.2
I-L2 = 11.2

PIF = 8

L2 = 81.5
I-L2 = 10.3

PIF = 1, 2,
4, 6

inputEGSDE UVCGANv2

Ty
pe

1

L2 = 40.9
I-L2 = 11.4

PIF = 7

L2 = 59.0
I-L2 = 11.5

PIF = 2, 3,
6

L2 = 48.9
I-L2 = 14.8

PIF =

L2 = 75.2
I-L2 = 11.4

PIF = 1, 3,
5, 6

L2 = 43.6
I-L2 = 12.6

PIF = 7, 8

L2 = 62.0
I-L2 = 11.9

PIF = 2, 3,
4

L2 = 40.9
I-L2 = 12.8

PIF = 8

L2 = 69.0
I-L2 = 11.9

PIF = 1, 2,
4, 6

L2 = 43.4
I-L2 = 12.8

PIF =

L2 = 80.9
I-L2 = 10.5

PIF = 1, 2,
3

L2 = 43.9
I-L2 = 10.6

PIF =

L2 = 71.9
I-L2 = 10.6

PIF = 2, 3,
4, 8

L2 = 46.2
I-L2 = 11.0

PIF =

L2 = 66.4
I-L2 = 11.1

PIF = 2, 3,
4, 8

inputEGSDE UVCGANv2

L2 = 43.6
I-L2 = 13.3

PIF = 7

L2 = 69.3
I-L2 = 10.3

PIF = 2, 3,
5

L2 = 40.5
I-L2 = 19.2

PIF =

L2 = 48.1
I-L2 = 15.5

PIF = 2, 3

L2 = 45.1
I-L2 = 17.0

PIF = 7

L2 = 43.2
I-L2 = 13.7

PIF = 1, 2,
3, 6

inputEGSDE UVCGANv2

Ty
pe

2

L2 = 45.6
I-L2 = 18.0

PIF = 7

L2 = 113.7
I-L2 = 14.5

PIF = 2, 3,
5, 6

L2 = 49.7
I-L2 = 16.4

PIF = 6

L2 = 38.2
I-L2 = 11.6

PIF = 1, 2,
3, 5

L2 = 40.0
I-L2 = 14.9

PIF = 7

L2 = 50.0
I-L2 = 9.1

PIF = 1, 2,
3, 6

inputEGSDE UVCGANv2

1. background 2. bone structure 3. expression 4. apparent age 5. eye color 6. eyebrows 7. hair color 8. hair texture
Categories of perceived image faithfulness (PIF):

Type 1 is designed to show what contributes to lower pixel-
wise L2 while I-L2-s are similar. Type 2 selects examples
with large I-L2 difference and helps readers to judge if I-L2

correlates with their own judgment on the similarity to the
source (i.e. which pairs look more like siblings.)

We list eight categories of perceived image faithfulness
(PIF) in the legend such as background, bone structure, fa-
cial expression, and so on. For each translated image, we in-
dicate which categories it outperforms that generated by the
other model. For example, for the input in Type 1 row 1 left,



EGSDE preserves the hairstyle and color (PIF=7) better
than UVCGANv2, but the UVCGANv2 translation main-
tains a sharper background (1), preserves the bone struc-
ture (2) and expression (3) better, and exhibits more simi-
larity in apparent age (4).

Type-1 examples suggest that pixel-level L2 is an inap-
propriate measurement for semantic consistency as UVC-
GANv2 translations manage to capture characterizing fea-
tures (such as a bone structure) even with high pixel-level
L2. In fact, the high pixel-level L2 of UVCGANv2 trans-
lations is often a result of benign modifications such as the
elongation of dark hair on a light background (e.g. Type
1 row 5 right) or a slight overall shift to a warmer hue
(e.g. Type 1 row 2 right).

On the contrary, the Type-2 examples suggest that I-
L2, the L2 on Inception latent features, might be a bet-
ter measurement of semantic consistency. While EGSDE
fails to maintain features such as background, facial expres-
sion (neural v.s. smile), eye movement, and prominent bone
structure and produces over-generalized translations, UVC-
GANv2 translations with significantly lower I-L2 manage
to preserve those features and appear more individualized.

These examples illustrate that the pixel-wise L2 faithful-
ness metric may be in poor agreement with a human judg-
ment of image faithfulness. They also point to a possibility
that the I-L2 distances, based on deep features of Inception-
v3, may better capture the perceived image faithfulness.
Such observations mirror the conclusion of [43], about the
effectiveness of deep features as perceptual metrics.

However, we stress again, that the main purpose of this
paper is to improve the performance of the classic Cycle-
GAN architecture, not the development of better faithful-
ness metrics. While this section points to a possibility of
I-L2 being a better faithfulness metric, a full-scale investi-
gation needs to be conducted to conclusively establish this.
We leave such a study for future work.

E. Toward Consistent FID Evaluation
The evaluation protocols used in the paper for CelebA-

HQ and AFHQ are provided by EGSDE [45]. Being ad-hoc,
these protocols lack consistency and differ significantly de-
pending on the dataset. A variety of different evaluation
protocols makes the evaluation of the unpaired I2I methods
rather quirky and error-prone.

As a step toward consistent FID evaluation, we provide
results of an alternative, but consistent evaluation protocol
for UVCGANv2 in Table 7. The consistent evaluation pro-
tocol uses only test splits (or validation splits if the test ones
are not available) of each dataset to assess the quality of im-
age translation.

The evaluation protocol begins with pre-processing all
the datasets in a consistent manner. The pre-processing step
resizes images from their original size down to 256 × 256

Table 7. Consistent FID and KID scores. Lower is better.
Female to Male Male to Female

FID KID (×100) FID KID (×100)

UVCGANv2 29.7 0.41± 0.18 24.2 0.20± 0.15

Dog to Cat Cat to Dog
FID KID (×100) FID KID (×100)

UVCGANv2 24.8 0.23± 0.13 44.2 0.76± 0.23

Dog to Wild Wild to Dog
FID KID (×100) FID KID (×100)

UVCGANv2 18.7 0.15± 0.14 44.7 0.68± 0.23

Cat to Wild Wild to Cat
FID KID (×100) FID KID (×100)

UVCGANv2 12.1 0.01± 0.09 21.2 0.20± 0.13

Table 8. Model Performance versus magnitude of the pixel-wise
consistency loss

λconsist Male to Female Cat to Dog
FID L2 FID L2

0 24.2 62.6 44.2 77.9
0.01 24.9 61.2 44.5 76.7
0.1 24.8 50.6 45.7 64.9
0.2 25.1 47.9 51.8 56.8
0.4 27.3 43.3 59.1 50.6
0.6 29.7 41.0 71.3 47.5
0.8 32.0 39.1 77.0 46.1
1.0 33.1 37.7 81.2 44.9

pixels (the same image size as is used for model training
and inference). To avoid FID score inconsistencies created
by aliasing artifacts [35] we rely on the Pillow library [9]
and Lanczos interpolation method.

Once the data pre-processing and image translation are
done, the actual evaluation can begin. To perform the
FID/KID score computation we use a torch-fidelity
package [33], which provides a validated implementation of
these metrics. The KID evaluation procedure depends on a
free parameter – the KID subset size. In this section, we
choose the KID subset size of 100 for all the datasets.

The suggested evaluation protocol differs in a number
of ways from the evaluation protocols of the AFHQ and
CelebA-HQ datasets of EGSDE. It differs from the ad-
hoc CelebA-HQ evaluation protocol [45] because the lat-
ter compares FID scores between samples of validation and
train splits, while the consistent version only uses validation
split. The consistent evaluation protocol is also different
from the ad-hoc version of the AFHQ one, which performs
FID evaluation between translated images of size 256×256
and target images of size 512×512. The consistent protocol
always uses pre-processed images of size 256× 256.



F. Additional Translation Samples
In this section, we provide additional translation samples

to facilitate visual comparison of image quality. Table 9 and
10 demonstrate samples on the Anime dataset. Table 11 and
12 provide gender swap samples on the CelebA dataset. Ta-
ble 13 and 14 show eyeglasses removal and addition sam-
ples on the CelebA dataset. Finally, Table 15, 16, and 17
provide samples on the AFHQ dataset, and Table 18, Male-
to-Female samples on the CelebA-HQ dataset.

G. Effects of the Pixel-Wise Consistency Loss
The main part of the paper compares models trained

with two settings of the pixel-wise consistency loss. The
UVCGANv2 model having λconsist = 0 and UVCGANv2-
C model with λconsist = 0.2. In this section, we show an
ablation of the λconsist values and their effect on the model
performance.

Table 8 demonstrates the effect of different values of
λconsist on the UVCGANv2 model realism (as measured by
the FID scores) and pixel-wise faithfulness (as measured by
the pixel-wise L2 distance).

As one might expect, the increase in λconsist is accom-
panied by an improvement in pixel-wise image faithfulness
and a decrease in image realism. Values of λconsist below 0.2
allow one to significantly improve pixel-wise image faith-
fulness at the expense of a modest loss of image realism.
Further increases in λconsist produce larger improvements in
pixel-wise faithfulness, but also lead to significant decreases
in image realism.

Additionally, Table 8 demonstrates that the trade-offs of
image realism to pixel-wise faithfulness are not uniform
across the datasets. High values of λconsist allow one to
achieve rather large improvements in pixel-wise faithful-
ness on the Male-to-Female task at a relatively small loss
of image realism. On the other hand, Cat-to-Dog transla-
tion is subject to a catastrophic loss of image realism with
the increase of λconsist.



Table 9. Sample translations for Selfie-to-Anime on Anime.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2

Table 10. Sample translations for Anime-to-Selfie on Anime.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2



Table 11. Sample translations for Male-to-Female on CelebA.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2

Table 12. Sample translations for Female-to-Male on CelebA.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2



Table 13. Sample translations for Removing Glasses on CelebA.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2

Table 14. Sample translations for Adding Glasses on CelebA.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
C

yc
le

G
A

N
U

-G
A

T-
IT

U
V

C
G

A
N

U
V

C
G

A
N

v2



Table 15. Sample translations for Cat-to-Dog on AFHQ.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
E

G
SD

E
E

G
SD

E
†

U
V

C
G

A
N

v2

Table 16. Sample translations for Wild-to-Dog on AFHQ.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
E

G
SD

E
E

G
SD

E
†

U
V

C
G

A
N

v2



Table 17. Sample translations for Wild-to-Cat on AFHQ. Since no benchmarking algorithms studied this task, we only show the input
and UVCGANv2’s translation.

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
U

V
C

G
A

N
v2

Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18

in
pu

t
U

V
C

G
A

N
v2

Table 18. Sample translations for Male-to-Female on CelebA-HQ.
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

in
pu

t
E

G
SD

E
E

G
SD

E
†

U
V

C
G

A
N

v2


