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Abstract

Unpaired image-to-image translation has broad appli-
cations in art, design, and scientific simulations. One
early breakthrough was CycleGAN that emphasizes one-
to-one mappings between two unpaired image domains via
generative-adversarial networks (GAN) coupled with the
cycle-consistency constraint, while more recent works pro-
mote one-to-many mapping to boost diversity of the trans-
lated images. Motivated by scientific simulation and one-to-
one needs, this work revisits the classic CycleGAN frame-
work and boosts its performance to outperform more con-
temporary models without relaxing the cycle-consistency
constraint. To achieve this, we equip the generator with
a Vision Transformer (ViT) and employ necessary train-
ing and regularization techniques. Compared to previous
best-performing models, our model performs better and re-
tains a strong correlation between the original and trans-
lated image. An accompanying ablation study shows that
both the gradient penalty and self-supervised pre-training
are crucial to the improvement. To promote reproducibility
and open science, the source code, hyperparameter config-
urations, and pre-trained model are available at https:
//github.com/LS4GAN/uvcgan.

1. Introduction

Deep generative models such as generative adversar-
ial networks (GAN) [30, 11, 41], variational autoencoder
(VAE) [44, 45], normalizing flow (NF) [26, 43], and diffu-
sion models (DM) [37, 70, 55] represent a class of statistical
models used to create realistic and diverse data instances
that mimic ones from a target data domain. Along with
applications in image processing, audio analysis, and text
generation, their success and expressiveness have attracted
researchers in natural science, including cosmology [54],
high-energy physics [25, 2], materials design [29], and drug
design [22, 9]. Most existing work treats deep generative

models as drop-in replacements for existing simulation soft-
ware. Modern simulation frameworks can generate data
with high fidelity, yet the data are imperfect. Widespread
systematic inconsistencies between the generated and actual
data significantly limit the applicability of simulation re-
sults. We would like to take advantage of the expressiveness
of deep generative models to bridge this simulation versus
reality gap. We frame the task as an unpaired image-to-
image translation problem, where simulation results can be
defined as one domain with experimental data as the other.
Unpaired is a necessary constraint because gathering sim-
ulation and experiment data with exact pixel-to-pixel map-
ping is difficult (often impossible). Apart from improving
the quality of the simulation results, the successful gener-
ative model can be run in the inverse direction to translate
real-world data into the simulation domain. This inverse
task can be viewed as a denoising step, helpful toward cor-
rectly inferring the underlying parameters from experiment
observations [20]. Achieving realistic scientific simulations
requires both well-defined scientific datasets and purpose-
fully designed machine learning models. This work will
focus on the latter by developing novel models for unpaired
image-to-image translation.

The CycleGAN [82] model is the first of its kind to
translate images between two domains without paired in-
stances. It uses two GANs, one for each translation direc-
tion. CycleGAN introduces cycle-consistency loss, where
an image should look like itself after a cycle of transla-
tions to the other domain and back. Such cycle-consistency
is of utmost importance for scientific applications as the
science cannot be altered during translation. Namely,
there should be a one-to-one mapping between a simu-
lation result and its experimental counterpart. However,
to promote more diverse image generation, many recent
works [80, 56, 61, 79] relaxed the cycle-consistency con-
straint. Following the same objective of revisiting and
modifying canonical neural architectures [8], we demon-
strate that by equipping CycleGAN with a Vision Trans-
former (ViT) [28] to boost non-local pattern learning and
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employing advanced training techniques, such as gradi-
ent penalty and self-supervised pre-training, the resulting
model, named UVCGAN, can outperform competing mod-
els in several benchmark datasets.
Contributions. In this work, we: 1) incorporated ViT to the
CycleGAN generator and employed advanced training tech-
niques, 2) demonstrated its superb image translation per-
formance versus other more heavy models, 3) showed via
an ablation study that the architecture change alone is in-
sufficient to compete with other methods and pre-training
and gradient-penalty are needed, and 4) identified the un-
matched evaluation results from past literature and stan-
dardized the evaluation procedure to ensure a fair compari-
son and promote reusability of our benchmarking results.

2. Related work
Deep Generative Models. Deep generative models cre-
ate realistic data points (images, molecules, audio samples,
etc.) that are similar to those presented in a dataset. Un-
like decision-making models that contract representation di-
mension and distill high-level information, generative mod-
els enlarge the representation dimension and extrapolate in-
formation. There are several types of deep generative mod-
els. A VAE [44, 45, 48, 64] reduces data points into a
probabilistic latent space and reconstructs them from sam-
ples of latent distributions. NFs [26, 43, 14, 31] make use
of the change of variable formula and transform samples
from a normal distribution to the data distribution via a
sequence of invertible and differentiable transformations.
DMs [37, 70, 55, 66, 69, 76] are parameterized Markov
chains trained to transform noise into data (forward pro-
cess) via successive steps. Meanwhile, GANs [30] formu-
late the learning process as a minimax game, where the
generator tries to fool the discriminator by creating realis-
tic data points, and the discriminator attempts to distinguish
the generated samples from the real ones. GANs are among
the most expressive and flexible models that can generate
high-resolution, diverse, style-specific images [11, 41].
GAN Training Techniques. The original GAN suffered
from many problems, such as mode collapsing and train-
ing divergence [52]. Since then, much work has been
done to improve training stability and model diversity. Pro-
GAN [40] introduces two stabilization methods: progres-
sive training and learning rate equalization. Progressive
training of the generator starts from low-resolution im-
ages and moves up to high-resolution ones. The learn-
ing rate equalization scheme seeks to ensure that all parts
of the model are being trained at the same rate. Wasser-
stein GAN [34] suggests that the destructive competition
between the generator and discriminator can be prevented
by using a better loss function, i.e., the Wasserstein loss
function. Its key ingredient is a gradient penalty term that
prevents the magnitude of the discriminator gradients from

growing too large. However, the Wasserstein loss function
was later reexamined. Notably, the assessment revealed the
gradient penalty term was responsible for stabilizing the
training and not the Wasserstien loss function [71]. In ad-
dition, the StyleGAN v2 [41] relies on a zero-centered gra-
dient penalty term to achieve state-of-the-art results on a
high-resolution image generation task. These findings mo-
tivated this work to explore applying the gradient penalty
terms to improve GAN training stability.
Transformer Architecture for Computer Vision. Con-
volutional neural network (CNN) architecture is a popu-
lar choice for computer vision tasks. In the natural lan-
guage processing (NLP) field, the attention mechanism
and transformer-style architecture have surpassed previous
models, such as hidden Markov models and recurrent neural
networks, in open benchmark tasks. Compared to CNNs,
transformers can more efficiently capture non-local pat-
terns, which are common in nature. Applications of trans-
formers in computer vision debuted in [28], while other re-
cent work has shown that a CNN-transformer hybrid can
achieve better performance [77, 35].
Self-supervised Pre-training. Self-supervised pre-training
primes network initial weights by training the network on
artificial tasks derived from the original data without super-
vision. This is especially important for training models with
a large amount of parameters on a small labeled dataset as
they tend to overfit. There are many innovative ways to
create these artificial self-supervision tasks. Examples in
computer vision include image inpainting [62], solving jig-
saw puzzles [58], predicting image rotations [46], multitask
learning [27], contrastive learning [15, 16], and teacher-
student latent bootstrapping [33, 13]. Common pre-training
methods in NLP include the auto-regressive [63] and mask-
filling [24] tasks. In the mask-filling task, some parts of the
sentence are masked, and the network is tasked with pre-
dicting the missing parts from their context. Once a model
is pre-trained, it can be fine-tuned for multiple downstream
tasks using much smaller labeled datasets.

We hypothesise GAN training also can benefit from self-
supervised pre-training. In particular, GAN training is
known to suffer from the “mode collapse” problem [52]:
the generator fails to reproduce the target distribution of
images faithfully. Instead, only a small set of images are
generated repeatedly despite diverse input samples. Obser-
vations have noted the mode collapse problem occurs just
a few epochs after beginning the GAN training [40]. This
suggests that better initialized model weights could be used.
Indeed, transfer learning of GANs, a form of pre-training,
has been an effective way to improve GAN performance
on small training datasets [75, 57, 78, 74, 32]. However,
scientific data, such as those in cosmology and high en-
ergy physics, are remotely similar to natural images. There-
fore, we have chosen only to pre-train generators on a self-
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supervised inpainting task, which has been successful in
both NLP and computer vision. Moreover, it is well suited
for image-to-image translation models, where the model’s
output shape is the same as its input shape.
GAN Models for Unpaired Image-to-image Translation.
Many frameworks [38, 47, 56, 80] have been developed
for unpaired image-to-image translation. While most com-
monly use GANs for translation, they differ in how consis-
tency is maintained. U-GAT-IT [42] follows the CycleGAN
closely but relies on more sophisticated generator and dis-
criminator networks for better performance. Other models
relax the cycle-consistency constraint. For example, ACL-
GAN [80] relaxes the per-image consistency constraint by
introducing the so-called “adversarial-consistency loss” that
imposes cycle-consistency at a distribution level between
a neighborhood of the input and the translations. Mean-
while, Council-GAN [56] abandons the idea of explicit con-
sistency enforcement and instead relies on a generator en-
semble with the assumption that, when multiple generators
arrive at an agreement, the commonly agreed upon por-
tion is what should be kept consistent. While relaxed or
implicit consistency constraints boost translation diversity
and achieve better evaluation scores, such models inevitably
introduce randomness into the feature space and output.
Hence, they are unsuitable for applications where a one-to-
one mapping is required. Compared to the original Cycle-
GAN, all these models contain more parameters requiring
more computation resources and longer training time. Con-
currently, Zheng et. al. [81] also proposed to utilize ViT
for image translation by replacing the ResNet blocks with
hybrid blocks of self-attention and convolution.

3. Method

3.1. CycleGAN-like Models

A GA→B Bf GB→A Ac

cycle-consistency loss

BGB→AAfGA→BBc

cycle-consistency loss

DA DBA GB→A Ai

identity loss

B GB→A Bi

identity loss

generator losses
discriminator loss

Figure 1. CycleGAN Framework

CycleGAN-like models [82, 42] interlace two generator-
discriminator pairs for unpaired image-to-image translation
(Figure 1). Denote the two image domains by A and B,
a CycleGAN-like model uses generator GA→B to translate
images from A to B, and generator GB→A, B to A. Dis-
criminator DA is used to distinguish between images in A
and those translated from B (denoted as Af in Figure 1) and
discriminator DB , B and Bf .

The discriminators are updated by backpropagating loss
corresponding to failure in distinguishing real and translated
images (called generative adversarial loss or GAN loss):

Ldisc,A =Ex∼BℓGAN (DA (GB→A(x)) , 0)

+ Ex∼AℓGAN (DA(x), 1) , (1)
Ldisc,B =Ex∼AℓGAN (DB (GA→B(x)) , 0)

+ Ex∼BℓGAN (DB(x), 1) . (2)

Here, ℓGAN can be any classification loss function (L2,
cross-entropy, Wasserstein [5], etc.), while the 0 and 1 are
class labels for translated (fake) and real images, respec-
tively. The generators are updated by backpropagating loss
from three sources: GAN loss, cycle-consistency loss, and
identity-consistency loss. Using GA→B as an example:

LGAN,A =Ex∼AℓGAN (DA (GA→B(x)) , 1) , (3)
Lcyc,A =Ex∼Aℓreg (GB→A (GA→B(x)) , x) , (4)
Lidt,A =Ex∼Aℓreg (GB→A (x) , x) . (5)

And,

Lgen,A→B =LGAN,A + λcycLcyc,A + λidtLidt,A, (6)
Lgen,B→A =LGAN,B + λcycLcyc,B + λidtLidt,B . (7)

Here, ℓreg can be any regression loss function (L1 or L2,
etc.), and λcyc and λidt are combination coefficients.

To improve the original CycleGAN model’s perfor-
mance, we implement three major changes. First, we mod-
ify the generator to have a hybrid architecture based on a
UNet with a ViT bottleneck (Section 3.2). Second, to regu-
larize the CycleGAN discriminator, we augment the vanilla
CycleGAN discriminator loss with a gradient penalty term
(Section 3.3). Finally, instead of training from a randomly
initialized network weights, we pre-train generators in a
self-supervised fashion on the image inpainting task to ob-
tain a better starting state (Section 3.4).

3.2. UNet-ViT Generator

A UNet-ViT generator consists of a UNet [67] with a
pixel-wise Vision Transformer (ViT) [28] at the bottleneck
(Figure 2A). UNet’s encoding path extracts features from
the input via four layers of convolution and downsampling.
The features extracted at each layer are also passed to the
corresponding layers of the decoding path via skip connec-
tions, whereas the bottom-most features are passed to the
ViT. We hypothesize that the skip connections are effective
in passing high-frequency features to the decoder, and the
ViT provides an effective means to learn pairwise relation-
ships of low-frequency features.

On the encoding path of the UNet, the pre-processing
layer turns an image into a tensor with dimension
(w0, h0, f0). A pre-processed tensor will have its width

3



⊕

⊕

⊕

⊕

encoding de
co

di
ng

pixel-wise ViT

pre-process post-process

Input Output

A. UNet-ViT Generator
InstanceNorm

Conv(k = 3, p = 1)

LeakyReLU

C. basic block

×2

normalization

Linear(2, fp)

sine

D. PE
Linear(fv, fh)

GeLu

Linear(fh, fv)

E. FFN

fla
tte

n

⊕

positional
embedding (PE)

L
i
n
e
a
r

L
a
y
e
r
N
o
r
m

m
ul

ti-
he

ad
se

lf
-

at
te

nt
io

n
(M

SA
)

+

L
a
y
e
r
N
o
r
m

fe
ed

-f
or

w
ar

d
ne

tw
or

k
(F

FN
)

+

L
i
n
e
a
r

re
sh

ap
e

×12Transformer encoder block

×
α

×
α

B. pixel-wise vision transformer
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down-sampling:
Conv(k = 2, s = 2)

up-sampling:
up-sample with
scale 2 and
Conv(k = 3, p = 1)

+ addition

⊕ concatenation along
feature dimension

pre-process Conv(k = 3, p = 1)
LeakyReLU

post-process 1 × 1-Conv
sigmoid

×α learnable
rezero parameter

Figure 2. Schematic diagrams of UVCGAN. A. UNet-ViT generator; B. pixel-wise ViT; C. basic block; D. positional embedding (PE);
F. feed-forward network (FFN).

and height halved at each down-sampling block, while the
feature dimension doubled at the last three down-sampling
blocks. The output from the encoding path with dimen-
sion (w, h, f) = (w0/16, h0/16, 8f0) forms the input to
the pixel-wise ViT bottleneck.

A pixel-wise ViT (Figure 2B) is composed primarily of
a stack of Transformer encoder blocks [24]. To construct an
input to the stack, the ViT first flattens an encoded image
along the spatial dimensions to form a sequence of tokens.
The token sequence has length w×h, and each token in the
sequence is a vector of length f . It then concatenates each
token with its two-dimensional Fourier positional embed-
ding [4] of dimension fp (Figure 2D) and linearly maps the
result to have dimension fv . To improve the Transformer
convergence, we adopt the rezero regularization [6] scheme
and introduce a trainable scaling parameter α that modu-
lates the magnitudes of the nontrivial branches of the resid-
ual blocks. The output from the Transformer stack is lin-
early projected back to have dimension f and unflattened
to have width w and h. In this study, we use 12 Transform
encoder blocks and set f, fp, fv = 384, and fh = 4fv for
the feed-forward network in each block (Figure 2E).

3.3. Discriminator Loss with Gradient Penalty (GP)

In this study, we use the least squares GAN (LSGAN)
loss function [50] (i.e., ℓGAN is an L2 error) in Eq. (1)-
(7) and supplement the discriminator loss with a GP term.
GP [34] originally was introduced to be used with Wasser-
stein GAN (WGAN) loss to ensure the 1-Lipschitz con-
straint [5]. However, in our experiments, WGAN + GP
yielded overall worse results, which echoes the findings
in [51, 52] We have also considered zero-centered GP [52].
In our case, zero-centered GP turned out to be very sensi-
tive to the values of hyperparameters, and did not improve
the training stability. Therefore, we settle on a more generic

GP form introduced in [40] with the following formula for
loss of DA:

LGP
disc,A = Ldisc,A + λGPE

[
(∥∇xDA(x)∥2 − γ)

2

γ2

]
, (8)

where Ldisc,A is defined as in Eq. (1), and LGP
disc,B follows

the same form. In our experiments, this γ-centered GP reg-
ularization provides more stable training and less sensitive
to the hyperparameter choices. To see the effect of GP on
model performance, refer to the ablation study detailed in
Section 5.3 and Appendix Section 1.

3.4. Self-Supervised Pre-training by Inpainting

Pre-training is an effective way to prime large networks
for downstream tasks [24, 7] that often can bring significant
improvement over random initialization. In this work, we
pre-train the UVCGAN generators on an image inpainting
task. More precisely, we tile images with non-overlapping
patches of size 32 × 32 and mask 40% of the patches by
setting their pixel values to zero. The generator is trained to
predict the original unmasked image using pixel-wise L1

loss. We consider two modes of pre-training: 1) on the
same dataset where the subsequent image translation is to
be performed and 2) on the ImageNet [23] dataset. In Sec-
tion 5.3, we conduct an ablation study on these two pre-
training modes together with no pre-training.

4. Experiments
4.1. Benchmarking Datasets

To test UVCGAN’s performance, we have completed
an extensive literature survey for benchmark datasets.
The most popular among them are datasets derived
from CelebA [49] and Flickr-Faces [59], as well as
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the SYNTHIA/GTA-to-Cityscape [68, 18, 65], photo-
to-painting [82], Selfie2Anime [42], and animal face
datasets [17]. We prioritize our effort on the Selfie2Anime
dataset and two others derived from the CelebA dataset:
gender swap (denoted as GenderSwap) and adding and
removing eyeglasses (marked as Eyeglasses), which have
been used in recent papers.

Selfie2Anime [42] is a small dataset with 3.4K images
in each domain. Both GenderSwap and Eyeglasses tasks
are derived from CelebA [49] based on the gender and eye-
glass attributes, respectively. GenderSwap contains about
68K males and 95K females for training, while Eyeglasses
includes 11K with glasses and 152K without. For a fair
comparison, we do not use CelebA’s validation dataset for
training. Instead, we combine it with the test dataset fol-
lowing the convention of [56, 80]. Selfie2Anime contains
images of size 256 × 256 that can be used directly. The
CelebA datasets contains images of size 178 × 218, which
we resize and crop to size 256×256 for UVCGAN training.

4.2. UVCGAN Training Procedures

Pre-training. The UVCGAN generators are pre-trained
with self-supervised image inpainting. To construct im-
paired images, we tile images of size 256 × 256 into non-
overlapping 32× 32 pixel patches and randomly mask 40%
of the patches by zeroing their pixel values. We use the
Adam optimizer, cosine annealing learning-rate scheduler,
and several standard data augmentations, such as small-
angle random rotation, random cropping, random flipping,
and color jittering. During pre-training, we do not distin-
guish the image domains, which means both generators in
the ensuing translation training have the same initialization.
In this work, we pre-train one generator on ImageNet, an-
other on CelebA, and one on the Selfie2Anime dataset.
Image Translation Training. For all three benchmarking
tasks, we train UVCGAN models for one million iterations
with a batch size of one. We use the Adam optimizer with
the learning rate kept constant at 0.0001 during the first half
of the training then linearly annealed to zero during the sec-
ond half. We apply three data augmentations: resizing, ran-
dom cropping, and random horizontal flipping. Before ran-
domly cropping images to 256×256, we enlarge them from
256× 256 to 286× 286 for Selfie2Anime and 178× 218 to
256× 313 for CelebA.
Hyperparameter search. The UVCGAN loss functions
depend on four hyperparameters: λcyc, λGP, λidt and γ,
Eq. (6)-(8). If identity loss (λidt) is used, it is always set
to λcyc/2 as suggested in [82]. To find the best-performing
configuration, we run a small-scale hyperparameter opti-
mization on a grid. Our experiments show that the best per-
formance for all three benchmarking tasks is achieved with
the LSGAN + GP with (λGP = 0.1, γ = 100) and with gen-
erators pre-trained on the image translation dataset itself.

Optimal λcyc differs slightly for CelebA and Selfie2Anime
at 5 and 10, respectively. An ablation study on hyperparam-
eter tuning can be found in Section 5.3. More training de-
tails also can be found in the open-source repository [73].

4.3. Other Model Training Details

To fairly represent other models’ performance, we strive
to reproduce trained models following three principles.
First, if a pre-trained model for a dataset exists, we will use
it directly. Second, in the absence of pre-trained models, we
will train the model from scratch using a configuration file
(if provided), following a description in the original paper,
or using a hyperparameter configuration for a similar task.
Third, we will keep the source code “as is” unless it abso-
lutely is necessary to make changes. In addition, we have
conducted a small-scale hyperparameter tuning on models
lacking hyperparameters for certain translation directions
(Appendix Sec. 2). Post-processing and evaluation choices
also will affect the reported performance (Section 5.2).

ACL-GAN [1] provides configuration file for the Gen-
derSwap dataset. For configuration files for Eyeglasses and
Selfie2Anime, we copy the settings for GenderSwap except
for the four key parameters λacl, λmask, δmin, and δmax, which
we modify according to the paper [80, p. 8, Training De-
tails]. Because ACL-GAN does not train two generators
jointly, we train a model for each direction for all datasets.
Council-GAN [19] provides models for all datasets but
only in one direction (selfie to anime, male to female, re-
moving glasses). The pre-tained models output images with
size 256 for GenderSwap and Selfie2Anime and 128 for
Eyeglasses. For a complete comparison, we train models
for the missing directions using the same hyperparameters
as the existing ones with the exception for Eyeglasses– we
train a model for adding glasses for image size 256. Cy-
cleGAN [21] models are trained from scratch with the de-
fault settings (resnet 9blocks generators and LSGAN
losses, batch size 1, etc.). Because the original CycleGAN
uses square images, we add a pre-processing for CelebA
by scaling up the shorter edge to 256 while maintaining
the aspect ratio, followed by a 256 × 256 random crop-
ping. U-GAT-IT [72] provides the pre-trained model for
Selfie2Anime, which is used directly. For the two CelebA
datasets, models are trained using default hyperparameters.

Table 1 depicts the training time (in hours) for vari-
ous models on the CelebA datasets using an NVIDIA RTX
A6000 GPU. The times correspond to training the models
with a batch size 1 for one million iterations. U-GAT-IT’s
long training time is due to a large number of loss function
terms that must be computed, as well as the large size of the
generators and discriminators. For Council-GAN, the time
stems from training an ensemble of generators, each with its
own discriminator, in addition to the domain discriminators.
More details are available in the open-source repository [3]
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Table 1. Training time. CycleGAN, U-GAT-IT, and UVCGAN
train two generators jointly. ACL-GAN and Council-GAN’s gen-
erators are trained separately for each direction. The time shown
is for training both directions.

Algorithm Time (hrs) Jointly Trained # Para.

ACL-GAN ∼ 86 ∼ 55M
Council-GAN ∼ 600 ∼ 116M

CycleGAN ∼ 40 ✓ ∼ 28M
U-GAT-IT ∼ 140 ✓ ∼ 671M
UVCGAN ∼ 60 ✓ ∼ 68M

5. Results
5.1. Evaluation Metrics

Fréchet Inception Distance (FID) [36] and Kernel Incep-
tion Distance (KID) [10] are the two most accepted met-
rics used for evaluating image-to-image translation perfor-
mance. A lower score means the translated images are
more similar to those in the target domain. As shown
in Table 2, our model offers better performance in most
image-to-image translation tasks compared to existing mod-
els. As a CycleGAN-like model, ours produce translated
images correlated strongly with the input images, such as
hair color and face orientations (Figure 3), which is cru-
cial for augmenting scientific simulations. On the contrary,
we observed the translations produced by ACL-GAN and
Council-GAN tend to be overly liberal on features that are
not essential in accomplishing the translation (such as back-
ground color or hair color and length). We also note that
although U-GAT-IT achieves lower scores in the anime-to-
selfie task and produces translations that resemble human
faces better, they are less correlated to the input and some-
times miss key features from the input (such as headdress
or glasses) that we want to preserve. In the Supplementary
material, more samples of larger sizes are provided.

5.2. Model Evaluation and Reproducibility

KID and FID for image-to-image translation are difficult
to reproduce. For example, in [56, 80, 42], most FID and
KID scores of the same task-model settings differ. We hy-
pothesize that this is due to: 1) Different sizes of test data as
FID decreases with more data samples [10] 2) Differences
in post-processing before testing 3) Different formulation of
metrics (e.g. KID in U-GAT-IT [42]) 4) Different FID and
KID implementations. Therefore, we standardize the eval-
uations as follows: 1) Using the full test datasets for FID
and KID—for KID subset size, use 50 for Selfie2Anime and
1000 for the two CelebA datasets; 2) Resizing non-square
CelebA images and taking a central crop of size 256× 256
to maintain the correct aspect ratio; 3) Delegating all KID
and FID calculations to the torch-fidelity package [60].

ACL-GAN follows a non-deterministic type of cycle
consistency and can generate a variable number of trans-

Table 2. FID and KID scores. Lower is better.
Selfie to Anime Anime to Selfie

FID KID (×100) FID KID (×100)
ACL-GAN 99.3 3.22± 0.26 128.6 3.49± 0.33

Council-GAN 91.9 2.74± 0.26 126.0 2.57± 0.32

CycleGAN 92.1 2.72± 0.29 127.5 2.52± 0.34

U-GAT-IT 95.8 2.74± 0.31 108.8 1.48± 0.34

UVCGAN 79.0 1.35± 0.20 122.8 2.33± 0.38

Male to Female Female to Male
FID KID (×100) FID KID (×100)

ACL-GAN 9.4 0.58± 0.06 19.1 1.38± 0.09

Council-GAN 10.4 0.74± 0.08 24.1 1.79± 0.10

CycleGAN 15.2 1.29± 0.11 22.2 1.74± 0.11

U-GAT-IT 24.1 2.20± 0.12 15.5 0.94± 0.07

UVCGAN 9.6 0.68± 0.07 13.9 0.91± 0.08

Remove Glasses Add Glasses
FID KID (×100) FID KID (×100)

ACL-GAN 16.7 0.70± 0.06 20.1 1.35± 0.14

Council-GAN 37.2 3.67± 0.22 19.5 1.33± 0.13

CycleGAN 24.2 1.87± 0.17 19.8 1.36± 0.12

U-GAT-IT 23.3 1.69± 0.14 19.0 1.08± 0.10

UVCGAN 14.4 0.68± 0.10 13.6 0.60± 0.08

lated images for an input. However, because larger sam-
ple size improves FID score [10], we generate one trans-
lated image per input for a fair comparison. To produce the
test result, ACL-GAN resizes images from CelebA to have
width 256 and output without cropping. For FID and KID
evaluation, we take the center 256× 256 crop from the test
output. Council-GAN resizes the images to have a width
256, except for removing glasses, which is 128 due to the
pre-trained model provided. In order to follow the princi-
ple of using a pre-trained model if available and maintain
consistency in evaluating on images of size 256, we resize
128 to 256 during testing, which may be responsible for the
large FID score. The reverse direction, adding glasses, is
trained from scratch using an image size of 256. Its perfor-
mance is similar to that of other models. CycleGAN takes a
random square crop for both training and testing. However,
for a fair comparison, we modify the source code so the test
output are the center crops. Since the original U-GAT-IT
cannot handle non-square images, we modified the code to
scale the shorter edge 256 for the CelebA datasets.

5.3. Ablation Studies

Table 3 summarizes the male-to-female and selfie-to-
anime translation performance with respect to pre-training,
GP, and identity loss. First, GP combined with identity loss
improves performance. Second, without GP, the identity
loss produces mixed results. Finally, pre-training on the
same dataset improves performance, especially in conjunc-
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remove glasses add glasses

Input ACL-GAN Council-GAN CycleGAN U-GAT-IT UVCGAN Input ACL-GAN Council-GAN CycleGAN U-GAT-IT UVCGAN

Input ACL-GAN Council-GAN CycleGAN U-GAT-IT UVCGAN Input ACL-GAN Council-GAN CycleGAN U-GAT-IT UVCGAN

Figure 3. Samples of unpaired image-to-image translation.

tion with the GP and identity loss. Appendix Sec. 1 contains
the complete ablation study results for all data sets.

We speculate that the GP is required to obtain the best
performance with pre-trained networks because those net-
works provide a good starting point for the image trans-
lation task. However, at the beginning of fine-tuning, the
discriminator is initialized by random values and provides
a meaningless signal to the generator. This random signal
may drive the generator away from the good starting point
and undermine the benefits of pre-training.

5.4. Interpretation of Attention

Because the UVCGAN generator uses the transformer
bottleneck, it is instructive to visualize its attention matrices

to see if they help with generator interpretability. We plot
(Figure 4) the attention weights produced by the multi-head
self-attention (MSA) unit in each of the 12 Transformer en-
coder blocks in the bottleneck of the UVCGAN generators
(Figure 2B). The (i, j)-entry of the attention matrix indi-
cates how much attention token i is paying to token j while
the sum of row i is one. When multi-head attention is used,
each head produces an attention matrix. For simplicity, we
average the attention weights over all heads and target to-
kens for each block in the Transformer encoder stack. Given
the input image of size 256 × 256, this provides an atten-
tion vector of dimension w × h (16× 16 = 256). The j-th
entry of such a vector indicates how much attention token j
receives on average. Because the tokens represent overlap-
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Figure 4. Attention. Attention heatmap generated by the attention weights from the 12 Transformer encoder blocks in the pixel-wise ViT.
The attention heatmap demonstrates the amount of attention different locations of an image receive.

Table 3. Ablation studies. Pre-train/Dataset column indicates
which dataset the generator is pre-trained on (None for no
pre-training; Same indicates CelebA for male-to-female and
Selfie2Anime for selfie-to-anime).

Pre-train Male to Female Selfie to Anime

Dataset GP idt FID KID (×100) FID KID (×100)

Same ✓ ✓ 9.6 0.68± 0.07 79.0 1.35± 0.20

ImageNet ✓ ✓ 11.0 0.85± 0.08 81.3 1.66± 0.21

None ✓ ✓ 11.0 0.85± 0.09 80.9 1.78± 0.20

Same ✓ 11.1 0.86± 0.08 83.9 1.88± 0.35

ImageNet ✓ 11.0 0.85± 0.08 84.3 1.77± 0.21

None ✓ 13.4 1.11± 0.09 115.4 6.85± 0.59

Same ✓ 14.2 1.22± 0.10 81.5 1.68± 0.22

ImageNet ✓ 14.5 1.23± 0.10 86.8 2.21± 0.25

None ✓ 14.4 1.26± 0.10 81.6 1.75± 0.25

Same 12.7 1.06± 0.09 79.0 1.32± 0.19

ImageNet 13.4 1.14± 0.10 91.2 2.63± 0.23

None 18.3 1.63± 0.11 81.2 1.76± 0.21

ping patches in the original image, we generate a heatmap as
follows: reshape a feature vector to a square of size 16×16,
upscale it 16 folds to match the dimension of the input im-
age, then apply a Gaussian filter with σ = 16. By over-
laying the attention heatmap on the input images, we note
that each block is paying attention to a specific facial part
with the eye and mouth areas receiving the most attention.
This echoes the findings in behavioral science experiments
on statistical eye fixation (e.g., [12]), where the regions of
interest also tend to be around the eyes and mouth, which
may indicate that the model’s attention is focused on the

most informative and relevant regions.

6. Conclusion
This work introduces UVCGAN to promote cycle-

consistent, content-preserving image translation and effec-
tively handle long-range spatial dependencies that remain
a common problem in scientific domain research. Com-
bined with self-supervised pre-training and GP regulariza-
tion, UVCGAN outperforms competing methods on a di-
verse set of image translation benchmarks. The ablation
study suggests GP and cycle-consistent loss work well with
UVCGAN. Additional inspection on attention weights indi-
cates our model has focused on the relevant regions of the
source images. To further demonstrate the effectiveness of
our model in handling long-distance patterns beyond bench-
mark datasets, more open scientific datasets are needed.
Potential Negative Social Impact. All data used in this
work are publicly available. The environmental impact of
training our model is greater than the original CycleGAN
yet considerably less comparing to other advanced models.
Although the motivation of our image-to-image translation
work is to bridge the gap between scientific simulation and
experiment, the authors are aware of its potential use for
generating fake content [53]. Thankfully, there are coun-
termeasures and detection tools [39] developed to counter
such misuse. To contribute to such mitigation efforts, we
have made our code and pre-trained models available.
Acknowledgement. The LDRD Program at Brookhaven
National Laboratory, sponsored by DOE’s Office of Science
under Contract DE-SC0012704, supported this work.
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Appendix A. Extended UVCGAN Ablation
Studies

This appendix shows the impact of the UVCGAN gen-
erator, gradient penalty (GP), and self-supervised generator
pretraining (PT) on UVCGAN’s performance. Table A1
summarizes these findings. For each data set, the bottom
half of the table shows the UVCGAN performance with
some of its components disabled. For example, UVCGAN
no GP shows the UVCGAN performance without the gra-
dient penalty term (but using a hybrid UNet-ViT genera-
tor and a self-supervised pretraining). This table affords
a few observations: 1. the addition of a hybrid UNet-ViT
generator alone typically produces a large degree of im-
provement compared to CycleGAN, even in the absence of
the self-supervised pre-training and GP term; 2. the self-
supervised generator pre-training without the GP term does
not seem to improve the image-to-image translation perfor-
mance and sometimes makes it worse; 3. the self-supervised
pre-training only helps when it is used in conjunction with
the GP.

Appendix B. Hyperparameter Tuning for
Other Algorithms

This section summarizes the hyperparameter tuning re-
sults for three benchmarking algorithms: ACL-GAN, Cy-
cleGAN, and U-GAT-IT. We omitted tuning for Council-
GAN because it takes too long to run (300 hours per trans-
lation).

Because none of the benchmarking algorithms use any
stablization techniques (such as the EMA of network
weight [41]) beyond shrinking learning rate, we suspect the
fluctuation may be at least partially due to instability of the
GAN training.

We only provide hyperparameter tuning results for a data
set or task if an algorithm did not work on it. We skip hyper-
parameter tuning if either a pre-trained model or a hyperpa-
rameter setup was provided by the author. In Table A2-A4,
the best results are marked in bold font. The default hyper-
parameters are highlighted in gray.

ACL-GAN worked on all three data sets studied and de-
tailed in this paper—but all for only one direction: selfie-to-
anime, male-to-female, and remove glasses. For the trans-
lation in the opposite directions, we tune three parameters
concerning the focus loss: focus loss weight, focus upper,
and focus lower. The results are summarized in Table A2.

CycleGAN did not work on any of the three data sets.
We search a grid on two hyperparameters: type of generator
(Gen.) and weight (Wt.) of cycle-consistency loss. We also
try two GAN modes: lsgan and wgangp. However, because
CycleGAN did not implement GP properly, wgangp did not
work. The results are summarized in Table A3.

In addition to hyperparameter tuning for U-GAT-IT, we

Table A1. FID and KID scores. Lower is better. PT stands for
the self-supervised generator pre-training, and GP means usage of
the gradient penalty.

Selfie to Anime Anime to Selfie
FID KID (×100) FID KID (×100)

ACL-GAN 99.3 3.22± 0.26 128.6 3.49± 0.33

Council-GAN 91.9 2.74± 0.26 126.0 2.57± 0.32

CycleGAN 92.1 2.74± 0.31 127.5 2.52± 0.34

U-GAT-IT 95.8 2.74± 0.31 108.8 1.48± 0.34

UVCGAN 79.0 1.35± 0.20 122.8 2.33± 0.38

UVCGAN no GP 81.4 1.68± 0.22 133.3 2.90± 0.49

UVCGAN no PT 80.9 1.78± 0.20 134.0 2.98± 0.49

UVCGAN no PT and GP 81.6 1.75± 0.25 140.6 3.53± 0.59

Male to Female Female to Male
FID KID (×100) FID KID (×100)

ACL-GAN 9.4 0.58± 0.06 19.1 1.38± 0.09

Council-GAN 10.4 0.74± 0.08 24.1 1.79± 0.10

CycleGAN 15.2 1.29± 0.11 22.2 1.74± 0.11

U-GAT-IT 24.1 2.20± 0.12 15.5 0.94± 0.07

UVCGAN 9.6 0.68± 0.07 13.9 0.91± 0.08

UVCGAN no GP 14.1 1.22± 0.10 20.4 1.61± 0.11

UVCGAN no PT 11.0 0.85± 0.09 14.7 0.98± 0.08

UVCGAN no PT and GP 14.4 1.26± 0.10 19.9 1.55± 0.11

Remove Glasses Add Glasses
FID KID (×100) FID KID (×100)

ACL-GAN 16.7 0.70± 0.06 20.1 1.35± 0.14

Council-GAN 37.2 3.67± 0.22 19.5 1.33± 0.13

CycleGAN 24.2 1.87± 0.17 19.8 1.36± 0.12

U-GAT-IT 23.3 1.69± 0.14 19.0 1.08± 0.10

UVCGAN 14.4 0.68± 0.10 13.6 0.60± 0.08

UVCGAN no GP 19.2 1.28± 0.15 18.7 1.14± 0.12

UVCGAN no PT 15.8 0.84± 0.12 14.3 0.70± 0.10

UVCGAN no PT and GP 19.7 1.32± 0.15 16.1 0.89± 0.11

Table A2. ACL-GAN hyperparameter tuning results. We tune
three hyperparameters related to the focus loss: weight of the focus
loss, focus upper, and focus lower.

task weight upper lower FID KID(×100)

anime-to-selfie
0 − − 128.6 3.49± 0.33

.025 .5 .3 205.3 11.0± 1.01

.025 .1 .05 250.3 18.6± 1.19

female-to-male
0 − − 46.0 3.39± 0.13

.025 .5 .3 19.1 1.38± 0.09
.05 .5 .3 36.3 2.91± 0.13

add glasses
0 − − 29.0 1.77± 0.12

.025 .1 .05 26.6 2.26± 0.17
.05 .1 .05 20.1 1.35± 0.14

also correct the aspect ratio problem of U-GAT-IT in this
revised version as the original U-GAT-IT implementation
cannot handle images with different height and width. We
implement the rescaling in the preprocessing stage, so a
CelebA image of width 178 and height 218 is resized to
have width 256 and height 313. As we did for CycleGAN
and UVCGAN, we take a random 256 × 256 crop from a
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Table A3. CycGAN hyperparameter tuning results.
FID KID(×100) FID KID(×100)

gen. Wt. selfie-to-anime anime-to-selfie

ResNet 5 92.1 2.72± 0.29 127.5 2.52± 0.34
ResNet 10 93.4 2.96± 0.27 129.4 2.91± 0.39

UNet 5 121.9 6.21± 0.32 134.3 2.96± 0.30
UNet 10 286.0 27.0± 0.87 135.8 3.32± 0.32

male-to-female female-to-male

ResNet 5 21.9 2.00± 0.12 33.6 2.82± 0.14
ResNet 10 15.2 1.29± 0.11 22.2 1.74± 0.11

UNet 5 45.5 4.55± 0.17 50.8 4.86± 0.16
UNet 10 47.4 4.82± 0.19 47.5 4.57± 0.17

remove glasses add glasses

ResNet 5 27.7 2.08± 0.16 26.0 1.77± 0.11
ResNet 10 24.2 1.87± 0.17 19.8 1.36± 0.12

UNet 5 32.2 2.52± 0.19 37.3 2.90± 0.14
UNet 10 32.2 2.52± 0.19 44.9 3.63± 0.20

training image and a central 256× 256 crop from a test im-
age.

U-GAT-IT studied the selfie-to-anime data set. For the
two CelebA data sets, we try three levels of weight of cycle-
consistency loss: (5, 10, and 20) and summarize the results
in Table A4.

Table A4. U-GAT-IT hyperparameter tuning results.

FID KID(×100) FID KID(×100)
weight male-to-female female-to-male

5 39.2 3.86± 0.15 45.1 4.04± 0.16
10 24.1 2.20± 0.12 15.5 0.94± 0.07
20 32.1 3.09± 0.16 47.5 4.42± 0.17

remove glasses add glasses

5 34.9 2.63± 0.15 50.0 5.08± 0.26
10 23.3 1.69± 0.14 19.0 1.08± 0.10
20 36.1 3.13± 0.19 36.1 2.67± 0.13

Appendix C. More detail about the UNet-ViT
Generator

A UNet-ViT generator consists of a UNet [67] with a
pixel-wise Vision Transformer (ViT) [28] at the bottleneck
(Figure A1). UNet’s encoding path extracts features from
the input via four layers of convolution and downsampling.
The features extracted at each layer are also passed to the
corresponding layers of the decoding path via the skip con-
nections, whereas the bottom-most features are passed to
the pixel-wise ViT (Figure A2).

On UNet’s encoding path, the pre-processing layer turns
an image into a tensor with dimension (w0, h0, f0). Each
layer of the encoding path consists of a basic and downsam-
pling block. The basic block is composed primarily of two
convolutions, while the downsampling block has one con-

volution with stride 2. A pre-processed tensor will have its
width and height halved at each downsampling block, while
the feature dimension doubles at the last three downsam-
pling blocks. Hence, the output from the encoding path will
have dimension (w, h, f) = (w0/16, h0/16, 8f0), and it
forms the input to the pixel-wise ViT bottleneck. Each layer
of the UNet decoding path consists of an upsampling block
followed by a basic block. A basic block on the decoding
path differs from one on the encoding path in that it takes as
input a concatenated tensor as input formed with the output
from the upsampling layer and the tensor from the corre-
sponding skip connection of the encoding path. The decod-
ing path’s output will go through a post-processing layer of
1 × 1 convolution with a sigmoid activation to produce an
image.

A pixel-wise ViT is composed primarily of a stack of
Transformer encoder blocks [24]. To construct an input to
the stack, the ViT first flattens an encoding along the spa-
tial dimensions to form a sequence of transformer tokens.
The token sequence has length w × h, and each token in
the sequence is a vector of length f . It then concatenates
each token with its two-dimensional Fourier positional em-
bedding [4] of dimension fp and linearly maps the result
to have dimension fv . To improve the Transformer conver-
gence, we adopt the rezero regularization [6] scheme and
introduce a trainable scaling parameter α that modulates
the magnitudes of the nontrivial branches of the residual
blocks. The Transformer stack output is linearly projected
back to have dimension f and unflattened to have width w
and h. In this study, we use input raw or cropped images
with w0 = h0 = 256 and set f0 = 48. Hence, we have
w = h = 16 and f = 384. We use 12 Transform encoder
blocks in ViT and set fp, fv = f , and fh = 4fv for the
feed-forward network in each transformer encoder block.

Appendix D. Additional Sample Translations
We show a few more translations in Figures A3 to A5.
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Figure A1. UNet ViT Generator with Full Details
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Figure A2. Vision Transformer with Full Details
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Figure A3. Additional Sample Translations: Selfie2Anime
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Figure A4. Additional Sample Translations: GenderSwap
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Figure A5. Additional Sample Translations: Eyeglasses
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